Swiss NewsPaper
No Result
View All Result
  • Business
    • Business Growth & Leadership
    • Corporate Strategy
    • Entrepreneurship & Startups
    • Global Markets & Economy
    • Investment & Stocks
  • Health & Science
    • Biotechnology & Pharma
    • Digital Health & Telemedicine
    • Scientific Research & Innovation
    • Wellbeing & Lifestyle
  • Marketing
    • Advertising & Paid Media
    • Branding & Public Relations
    • SEO & Digital Marketing
    • Social Media & Content Strategy
  • Economy
    • Economic Development
    • Global Trade & Geopolitics
    • Government Regulations & Policies
  • Sustainability
    • Climate Change & Environmental Policies
    • Future of Work & Smart Cities
    • Renewable Energy & Green Tech
    • Sustainable Business Practices
  • Technology & AI
    • Artificial Intelligence & Automation
    • Big Data & Cloud Computing
    • Blockchain & Web3
    • Cybersecurity & Data Privacy
    • Software Development & Engineering
  • Business
    • Business Growth & Leadership
    • Corporate Strategy
    • Entrepreneurship & Startups
    • Global Markets & Economy
    • Investment & Stocks
  • Health & Science
    • Biotechnology & Pharma
    • Digital Health & Telemedicine
    • Scientific Research & Innovation
    • Wellbeing & Lifestyle
  • Marketing
    • Advertising & Paid Media
    • Branding & Public Relations
    • SEO & Digital Marketing
    • Social Media & Content Strategy
  • Economy
    • Economic Development
    • Global Trade & Geopolitics
    • Government Regulations & Policies
  • Sustainability
    • Climate Change & Environmental Policies
    • Future of Work & Smart Cities
    • Renewable Energy & Green Tech
    • Sustainable Business Practices
  • Technology & AI
    • Artificial Intelligence & Automation
    • Big Data & Cloud Computing
    • Blockchain & Web3
    • Cybersecurity & Data Privacy
    • Software Development & Engineering
No Result
View All Result
Swiss NewsPaper
No Result
View All Result
Home Technology & AI Software Development & Engineering

Refactoring with Codemods to Automate API Adjustments

swissnewspaper by swissnewspaper
27 May 2025
Reading Time: 22 mins read
0
Refactoring with Codemods to Automate API Adjustments


As a library developer, chances are you’ll create a preferred utility that a whole lot of
1000’s of builders depend on every day, comparable to lodash or React. Over time,
utilization patterns would possibly emerge that transcend your preliminary design. When this
occurs, chances are you’ll want to increase an API by including parameters or modifying
operate signatures to repair edge instances. The problem lies in rolling out
these breaking adjustments with out disrupting your customers’ workflows.

That is the place codemods are available in—a strong instrument for automating
large-scale code transformations, permitting builders to introduce breaking
API adjustments, refactor legacy codebases, and keep code hygiene with
minimal guide effort.

On this article, we’ll discover what codemods are and the instruments you’ll be able to
use to create them, comparable to jscodeshift, hypermod.io, and codemod.com. We’ll stroll via real-world examples,
from cleansing up characteristic toggles to refactoring part hierarchies.
You’ll additionally discover ways to break down complicated transformations into smaller,
testable items—a follow referred to as codemod composition—to make sure
flexibility and maintainability.

By the tip, you’ll see how codemods can turn out to be an important a part of your
toolkit for managing large-scale codebases, serving to you retain your code clear
and maintainable whereas dealing with even essentially the most difficult refactoring
duties.

Breaking Adjustments in APIs

Returning to the state of affairs of the library developer, after the preliminary
launch, new utilization patterns emerge, prompting the necessity to prolong an
API—maybe by including a parameter or modifying a operate signature to
make it simpler to make use of.

For easy adjustments, a primary find-and-replace within the IDE would possibly work. In
extra complicated instances, you would possibly resort to utilizing instruments like sed
or awk. Nonetheless, when your library is extensively adopted, the
scope of such adjustments turns into more durable to handle. You’ll be able to’t make certain how
extensively the modification will influence your customers, and the very last thing
you need is to interrupt current performance that doesn’t want
updating.

A typical strategy is to announce the breaking change, launch a brand new
model, and ask customers emigrate at their very own tempo. However this workflow,
whereas acquainted, usually would not scale nicely, particularly for main shifts.
Contemplate React’s transition from class parts to operate parts
with hooks—a paradigm shift that took years for big codebases to completely
undertake. By the point groups managed emigrate, extra breaking adjustments had been
usually already on the horizon.

For library builders, this example creates a burden. Sustaining
a number of older variations to assist customers who haven’t migrated is each
pricey and time-consuming. For customers, frequent adjustments threat eroding belief.
They might hesitate to improve or begin exploring extra steady options,
which perpetuating the cycle.

However what in the event you may assist customers handle these adjustments routinely?
What in the event you may launch a instrument alongside your replace that refactors
their code for them—renaming features, updating parameter order, and
eradicating unused code with out requiring guide intervention?

That’s the place codemods are available in. A number of libraries, together with React
and Subsequent.js, have already embraced codemods to easy the trail for model
bumps. For instance, React offers codemods to deal with the migration from
older API patterns, just like the previous Context API, to newer ones.

So, what precisely is the codemod we’re speaking about right here?

What’s a Codemod?

A codemod (code modification) is an automatic script used to remodel
code to observe new APIs, syntax, or coding requirements. Codemods use
Summary Syntax Tree (AST) manipulation to use constant, large-scale
adjustments throughout codebases. Initially developed at Fb, codemods helped
engineers handle refactoring duties for big tasks like React. As
Fb scaled, sustaining the codebase and updating APIs turned
more and more tough, prompting the event of codemods.

Manually updating 1000’s of recordsdata throughout totally different repositories was
inefficient and error-prone, so the idea of codemods—automated scripts
that remodel code—was launched to deal with this downside.

The method sometimes entails three principal steps:

  1. Parsing the code into an AST, the place every a part of the code is
    represented as a tree construction.
  2. Modifying the tree by making use of a change, comparable to renaming a
    operate or altering parameters.
  3. Rewriting the modified tree again into the supply code.

By utilizing this strategy, codemods be certain that adjustments are utilized
constantly throughout each file in a codebase, decreasing the prospect of human
error. Codemods may deal with complicated refactoring eventualities, comparable to
adjustments to deeply nested constructions or eradicating deprecated API utilization.

If we visualize the method, it could look one thing like this:

Determine 1: The three steps of a typical codemod course of

The concept of a program that may “perceive” your code after which carry out
automated transformations isn’t new. That’s how your IDE works once you
run refactorings like Extract Perform, Rename Variable, or Inline Perform.
Basically, your IDE parses the supply code into ASTs and applies
predefined transformations to the tree, saving the outcome again into your
recordsdata.

For contemporary IDEs, many issues occur beneath the hood to make sure adjustments
are utilized appropriately and effectively, comparable to figuring out the scope of
the change and resolving conflicts like variable identify collisions. Some
refactorings even immediate you to enter parameters, comparable to when utilizing
Change Perform Declaration, the place you’ll be able to modify the
order of parameters or default values earlier than finalizing the change.

Use jscodeshift in JavaScript Codebases

Let’s have a look at a concrete instance to know how we may run a
codemod in a JavaScript mission. The JavaScript neighborhood has a number of
instruments that make this work possible, together with parsers that convert supply
code into an AST, in addition to transpilers that may remodel the tree into
different codecs (that is how TypeScript works). Moreover, there are
instruments that assist apply codemods to complete repositories routinely.

One of the common instruments for writing codemods is jscodeshift, a toolkit maintained by Fb.
It simplifies the creation of codemods by offering a strong API to
manipulate ASTs. With jscodeshift, builders can seek for particular
patterns within the code and apply transformations at scale.

You should utilize jscodeshift to determine and change deprecated API calls
with up to date variations throughout a complete mission.

Let’s break down a typical workflow for composing a codemod
manually.

Clear a Stale Characteristic Toggle

Let’s begin with a easy but sensible instance to show the
energy of codemods. Think about you’re utilizing a characteristic
toggle
in your
codebase to regulate the discharge of unfinished or experimental options.
As soon as the characteristic is reside in manufacturing and dealing as anticipated, the following
logical step is to scrub up the toggle and any associated logic.

As an example, take into account the next code:

const information = featureToggle('feature-new-product-list') ? { identify: 'Product' } : undefined;

As soon as the characteristic is absolutely launched and not wants a toggle, this
could be simplified to:

const information = { identify: 'Product' };

The duty entails discovering all cases of featureToggle within the
codebase, checking whether or not the toggle refers to
feature-new-product-list, and eradicating the conditional logic surrounding
it. On the identical time, different characteristic toggles (like
feature-search-result-refinement, which can nonetheless be in growth)
ought to stay untouched. The codemod must perceive the construction
of the code to use adjustments selectively.

Understanding the AST

Earlier than we dive into writing the codemod, let’s break down how this
particular code snippet appears to be like in an AST. You should utilize instruments like AST
Explorer
to visualise how supply code and AST
are mapped. It’s useful to know the node varieties you are interacting
with earlier than making use of any adjustments.

The picture under reveals the syntax tree by way of ECMAScript syntax. It
incorporates nodes like Identifier (for variables), StringLiteral (for the
toggle identify), and extra summary nodes like CallExpression and
ConditionalExpression.

Determine 2: The Summary Syntax Tree illustration of the characteristic toggle examine

On this AST illustration, the variable information is assigned utilizing a
ConditionalExpression. The check a part of the expression calls
featureToggle('feature-new-product-list'). If the check returns true,
the consequent department assigns { identify: 'Product' } to information. If
false, the alternate department assigns undefined.

For a process with clear enter and output, I desire writing checks first,
then implementing the codemod. I begin by defining a destructive case to
guarantee we don’t unintentionally change issues we wish to depart untouched,
adopted by an actual case that performs the precise conversion. I start with
a easy state of affairs, implement it, then add a variation (like checking if
featureToggle is known as inside an if assertion), implement that case, and
guarantee all checks go.

This strategy aligns nicely with Check-Pushed Growth (TDD), even
in the event you don’t follow TDD usually. Realizing precisely what the
transformation’s inputs and outputs are earlier than coding improves security and
effectivity, particularly when tweaking codemods.

With jscodeshift, you’ll be able to write checks to confirm how the codemod
behaves:

const remodel = require("../remove-feature-new-product-list");

defineInlineTest(
  remodel,
  {},
  `
  const information = featureToggle('feature-new-product-list') ? { identify: 'Product' } : undefined;
  `,
  `
  const information = { identify: 'Product' };
  `,
  "delete the toggle feature-new-product-list in conditional operator"
);

The defineInlineTest operate from jscodeshift lets you outline
the enter, anticipated output, and a string describing the check’s intent.
Now, working the check with a traditional jest command will fail as a result of the
codemod isn’t written but.

The corresponding destructive case would make sure the code stays unchanged
for different characteristic toggles:

defineInlineTest(
  remodel,
  {},
  `
  const information = featureToggle('feature-search-result-refinement') ? { identify: 'Product' } : undefined;
  `,
  `
  const information = featureToggle('feature-search-result-refinement') ? { identify: 'Product' } : undefined;
  `,
  "don't change different characteristic toggles"
);

Writing the Codemod

Let’s begin by defining a easy remodel operate. Create a file
known as remodel.js with the next code construction:

module.exports = operate(fileInfo, api, choices) {
  const j = api.jscodeshift;
  const root = j(fileInfo.supply);

  // manipulate the tree nodes right here

  return root.toSource();
};

This operate reads the file right into a tree and makes use of jscodeshift’s API to
question, modify, and replace the nodes. Lastly, it converts the AST again to
supply code with .toSource().

Now we are able to begin implementing the remodel steps:

  1. Discover all cases of featureToggle.
  2. Confirm that the argument handed is 'feature-new-product-list'.
  3. Exchange the complete conditional expression with the consequent half,
    successfully eradicating the toggle.

Right here’s how we obtain this utilizing jscodeshift:

module.exports = operate (fileInfo, api, choices) {
  const j = api.jscodeshift;
  const root = j(fileInfo.supply);

  // Discover ConditionalExpression the place the check is featureToggle('feature-new-product-list')
  root
    .discover(j.ConditionalExpression, {
      check: {
        callee: { identify: "featureToggle" },
        arguments: [{ value: "feature-new-product-list" }],
      },
    })
    .forEach((path) => {
      // Exchange the ConditionalExpression with the 'consequent'
      j(path).replaceWith(path.node.consequent);
    });

  return root.toSource();
};

The codemod above:

  • Finds ConditionalExpression nodes the place the check calls
    featureToggle('feature-new-product-list').
  • Replaces the complete conditional expression with the ensuing (i.e., {
    identify: 'Product' }
    ), eradicating the toggle logic and leaving simplified code
    behind.

This instance demonstrates how simple it’s to create a helpful
transformation and apply it to a big codebase, considerably decreasing
guide effort.

You’ll want to write down extra check instances to deal with variations like
if-else statements, logical expressions (e.g.,
!featureToggle('feature-new-product-list')), and so forth to make the
codemod strong in real-world eventualities.

As soon as the codemod is prepared, you’ll be able to try it out on a goal codebase,
such because the one you are engaged on. jscodeshift offers a command-line
instrument that you should utilize to use the codemod and report the outcomes.

$ jscodeshift -t transform-name src/

After validating the outcomes, examine that each one useful checks nonetheless
go and that nothing breaks—even in the event you’re introducing a breaking change.
As soon as happy, you’ll be able to commit the adjustments and lift a pull request as
a part of your regular workflow.

Codemods Enhance Code High quality and Maintainability

Codemods aren’t simply helpful for managing breaking API adjustments—they will
considerably enhance code high quality and maintainability. As codebases
evolve, they usually accumulate technical debt, together with outdated characteristic
toggles, deprecated strategies, or tightly coupled parts. Manually
refactoring these areas could be time-consuming and error-prone.

By automating refactoring duties, codemods assist maintain your codebase clear
and freed from legacy patterns. Usually making use of codemods lets you
implement new coding requirements, take away unused code, and modernize your
codebase with out having to manually modify each file.

Refactoring an Avatar Part

Now, let’s have a look at a extra complicated instance. Suppose you’re working with
a design system that features an Avatar part tightly coupled with a
Tooltip. Each time a person passes a identify prop into the Avatar, it
routinely wraps the avatar with a tooltip.

Determine 3: A avatar part with a tooltip

Right here’s the present Avatar implementation:

import { Tooltip } from "@design-system/tooltip";

const Avatar = ({ identify, picture }: AvatarProps) => {
  if (identify) {
    return (
      
        
      
    );
  }

  return ;
};

The objective is to decouple the Tooltip from the Avatar part,
giving builders extra flexibility. Builders ought to have the ability to determine
whether or not to wrap the Avatar in a Tooltip. Within the refactored model,
Avatar will merely render the picture, and customers can apply a Tooltip
manually if wanted.

Right here’s the refactored model of Avatar:

const Avatar = ({ picture }: AvatarProps) => {
  return ;
};

Now, customers can manually wrap the Avatar with a Tooltip as
wanted:

import { Tooltip } from "@design-system/tooltip";
import { Avatar } from "@design-system/avatar";

const UserProfile = () => {
  return (
    
      
    
  );
};

The problem arises when there are a whole lot of Avatar usages unfold
throughout the codebase. Manually refactoring every occasion could be extremely
inefficient, so we are able to use a codemod to automate this course of.

Utilizing instruments like AST Explorer, we are able to
examine the part and see which nodes characterize the Avatar utilization
we’re concentrating on. An Avatar part with each identify and picture props
is parsed into an summary syntax tree as proven under:

Determine 4: AST of the Avatar part utilization

Writing the Codemod

Let’s break down the transformation into smaller duties:

  • Discover Avatar utilization within the part tree.
  • Verify if the identify prop is current.
    • If not, do nothing.
    • If current:
      • Create a Tooltip node.
      • Add the identify to the Tooltip.
      • Take away the identify from Avatar.
      • Add Avatar as a baby of the Tooltip.
      • Exchange the unique Avatar node with the brand new Tooltip.

To start, we’ll discover all cases of Avatar (I’ll omit a number of the
checks, however it’s best to write comparability checks first).

defineInlineTest(
    { default: remodel, parser: "tsx" },
    {},
    `
    
    `,
    `
    
      
    
    `,
    "wrap avatar with tooltip when identify is supplied"
  );

Much like the featureToggle instance, we are able to use root.discover with
search standards to find all Avatar nodes:

root
  .discover(j.JSXElement, {
    openingElement: { identify: { identify: "Avatar" } },
  })
  .forEach((path) => {
    // now we are able to deal with every Avatar occasion
  });

Subsequent, we examine if the identify prop is current:

root
  .discover(j.JSXElement, {
    openingElement: { identify: { identify: "Avatar" } },
  })
  .forEach((path) => {
    const avatarNode = path.node;

    const nameAttr = avatarNode.openingElement.attributes.discover(
      (attr) => attr.identify.identify === "identify"
    );

    if (nameAttr) {
      const tooltipElement = createTooltipElement(
        nameAttr.worth.worth,
        avatarNode
      );
      j(path).replaceWith(tooltipElement);
    }
  });

For the createTooltipElement operate, we use the
jscodeshift API to create a brand new JSX node, with the identify
prop utilized to the Tooltip and the Avatar
part as a baby. Lastly, we name replaceWith to
change the present path.

Right here’s a preview of the way it appears to be like in
Hypermod, the place the codemod is written on
the left. The highest half on the fitting is the unique code, and the underside
half is the reworked outcome:

Determine 5: Run checks inside hypermod earlier than apply it to your codebase

This codemod searches for all cases of Avatar. If a
identify prop is discovered, it removes the identify prop
from Avatar, wraps the Avatar inside a
Tooltip, and passes the identify prop to the
Tooltip.

By now, I hope it’s clear that codemods are extremely helpful and
that the workflow is intuitive, particularly for large-scale adjustments the place
guide updates could be an enormous burden. Nonetheless, that is not the entire
image. Within the subsequent part, I’ll make clear a number of the challenges
and the way we are able to tackle these less-than-ideal points.

Fixing Widespread Pitfalls of Codemods

As a seasoned developer, you understand the “completely satisfied path” is just a small half
of the total image. There are quite a few eventualities to contemplate when writing
a change script to deal with code routinely.

Builders write code in quite a lot of kinds. For instance, somebody
would possibly import the Avatar part however give it a unique identify as a result of
they may have one other Avatar part from a unique package deal:

import { Avatar as AKAvatar } from "@design-system/avatar";

const UserInfo = () => (
  AKAvatar identify="Juntao Qiu" picture="/juntao.qiu.avatar.png" />
);

A easy textual content seek for Avatar gained’t work on this case. You’ll want
to detect the alias and apply the transformation utilizing the right
identify.

One other instance arises when coping with Tooltip imports. If the file
already imports Tooltip however makes use of an alias, the codemod should detect that
alias and apply the adjustments accordingly. You’ll be able to’t assume that the
part named Tooltip is all the time the one you’re searching for.

Within the characteristic toggle instance, somebody would possibly use
if(featureToggle('feature-new-product-list')), or assign the results of
the toggle operate to a variable earlier than utilizing it:

const shouldEnableNewFeature = featureToggle('feature-new-product-list');

if (shouldEnableNewFeature) {
  //...
}

They may even use the toggle with different circumstances or apply logical
negation, making the logic extra complicated:

const shouldEnableNewFeature = featureToggle('feature-new-product-list');

if (!shouldEnableNewFeature && someOtherLogic) {
  //...
}

These variations make it tough to foresee each edge case,
rising the danger of unintentionally breaking one thing. Relying solely
on the instances you’ll be able to anticipate just isn’t sufficient. You want thorough testing
to keep away from breaking unintended components of the code.

Leveraging Supply Graphs and Check-Pushed Codemods

To deal with these complexities, codemods ought to be used alongside different
methods. As an example, just a few years in the past, I participated in a design
system parts rewrite mission at Atlassian. We addressed this subject by
first looking out the supply graph, which contained nearly all of inside
part utilization. This allowed us to know how parts had been used,
whether or not they had been imported beneath totally different names, or whether or not sure
public props had been ceaselessly used. After this search section, we wrote our
check instances upfront, making certain we coated nearly all of use instances, and
then developed the codemod.

In conditions the place we could not confidently automate the improve, we
inserted feedback or “TODOs” on the name websites. This allowed the
builders working the script to deal with particular instances manually. Often,
there have been solely a handful of such cases, so this strategy nonetheless proved
useful for upgrading variations.

Using Present Code Standardization Instruments

As you’ll be able to see, there are many edge instances to deal with, particularly in
codebases past your management—comparable to exterior dependencies. This
complexity signifies that utilizing codemods requires cautious supervision and a
evaluation of the outcomes.

Nonetheless, in case your codebase has standardization instruments in place, comparable to a
linter that enforces a selected coding type, you’ll be able to leverage these
instruments to cut back edge instances. By implementing a constant construction, instruments
like linters assist slender down the variations in code, making the
transformation simpler and minimizing surprising points.

As an example, you might use linting guidelines to limit sure patterns,
comparable to avoiding nested conditional (ternary) operators or implementing named
exports over default exports. These guidelines assist streamline the codebase,
making codemods extra predictable and efficient.

Moreover, breaking down complicated transformations into smaller, extra
manageable ones lets you deal with particular person points extra exactly. As
we’ll quickly see, composing smaller codemods could make dealing with complicated
adjustments extra possible.

Codemod Composition

Let’s revisit the characteristic toggle elimination instance mentioned earlier. Within the code snippet
we have now a toggle known as feature-convert-new must be eliminated:

import { featureToggle } from "./utils/featureToggle";

const convertOld = (enter: string) => {
  return enter.toLowerCase();
};

const convertNew = (enter: string) => {
  return enter.toUpperCase();
};

const outcome = featureToggle("feature-convert-new")
  ? convertNew("Good day, world")
  : convertOld("Good day, world");

console.log(outcome);

The codemod for take away a given toggle works high-quality, and after working the codemod,
we would like the supply to appear like this:

const convertNew = (enter: string) => {
  return enter.toUpperCase();
};

const outcome = convertNew("Good day, world");

console.log(outcome);

Nonetheless, past eradicating the characteristic toggle logic, there are further duties to
deal with:

  • Take away the unused convertOld operate.
  • Clear up the unused featureToggle import.

After all, you might write one huge codemod to deal with all the pieces in a
single go and check it collectively. Nonetheless, a extra maintainable strategy is
to deal with codemod logic like product code: break the duty into smaller,
impartial items—identical to how you’d usually refactor manufacturing
code.

Breaking It Down

We will break the massive transformation down into smaller codemods and
compose them. The benefit of this strategy is that every transformation
could be examined individually, masking totally different instances with out interference.
Furthermore, it lets you reuse and compose them for various
functions.

As an example, you would possibly break it down like this:

  • A metamorphosis to take away a particular characteristic toggle.
  • One other transformation to scrub up unused imports.
  • A metamorphosis to take away unused operate declarations.

By composing these, you’ll be able to create a pipeline of transformations:

import { removeFeatureToggle } from "./remove-feature-toggle";
import { removeUnusedImport } from "./remove-unused-import";
import { removeUnusedFunction } from "./remove-unused-function";

import { createTransformer } from "./utils";

const removeFeatureConvertNew = removeFeatureToggle("feature-convert-new");

const remodel = createTransformer([
  removeFeatureConvertNew,
  removeUnusedImport,
  removeUnusedFunction,
]);

export default remodel;

On this pipeline, the transformations work as follows:

  1. Take away the feature-convert-new toggle.
  2. Clear up the unused import assertion.
  3. Take away the convertOld operate because it’s not used.

Determine 6: Compose transforms into a brand new remodel

You too can extract further codemods as wanted, combining them in
numerous orders relying on the specified final result.

Determine 7: Put totally different transforms right into a pipepline to kind one other remodel

The createTransformer Perform

The implementation of the createTransformer operate is comparatively
simple. It acts as a higher-order operate that takes an inventory of
smaller remodel features, iterates via the listing to use them to
the foundation AST, and at last converts the modified AST again into supply
code.

import { API, Assortment, FileInfo, JSCodeshift, Choices } from "jscodeshift";

kind TransformFunction = { (j: JSCodeshift, root: Assortment): void };

const createTransformer =
  (transforms: TransformFunction[]) =>
  (fileInfo: FileInfo, api: API, choices: Choices) => {
    const j = api.jscodeshift;
    const root = j(fileInfo.supply);

    transforms.forEach((remodel) => remodel(j, root));
    return root.toSource(choices.printOptions || { quote: "single" });
  };

export { createTransformer };

For instance, you might have a remodel operate that inlines
expressions assigning the characteristic toggle name to a variable, so in later
transforms you don’t have to fret about these instances anymore:

const shouldEnableNewFeature = featureToggle('feature-convert-new');

if (!shouldEnableNewFeature && someOtherLogic) {
  //...
}

Turns into this:

if (!featureToggle('feature-convert-new') && someOtherLogic) {
  //...
}

Over time, you would possibly construct up a set of reusable, smaller
transforms, which might significantly ease the method of dealing with tough edge
instances. This strategy proved extremely efficient in our work refining design
system parts. As soon as we transformed one package deal—such because the button
part—we had just a few reusable transforms outlined, like including feedback
initially of features, eradicating deprecated props, or creating aliases
when a package deal is already imported above.

Every of those smaller transforms could be examined and used independently
or mixed for extra complicated transformations, which hurries up subsequent
conversions considerably. Consequently, our refinement work turned extra
environment friendly, and these generic codemods at the moment are relevant to different inside
and even exterior React codebases.

Since every remodel is comparatively standalone, you’ll be able to fine-tune them
with out affecting different transforms or the extra complicated, composed ones. For
occasion, you would possibly re-implement a remodel to enhance efficiency—like
decreasing the variety of node-finding rounds—and with complete check
protection, you are able to do this confidently and safely.

Codemods in Different Languages

Whereas the examples we’ve explored to date give attention to JavaScript and JSX
utilizing jscodeshift, codemods will also be utilized to different languages. For
occasion, JavaParser provides an identical
mechanism in Java, utilizing AST manipulation to refactor Java code.

Utilizing JavaParser in a Java Codebase

JavaParser could be helpful for making breaking API adjustments or refactoring
giant Java codebases in a structured, automated method.

Assume we have now the next code in FeatureToggleExample.java, which
checks the toggle feature-convert-new and branches accordingly:

public class FeatureToggleExample {
    public void execute() {
        if (FeatureToggle.isEnabled("feature-convert-new")) {
          newFeature();
        } else {
          oldFeature();
        }
    }

    void newFeature() {
        System.out.println("New Characteristic Enabled");
    }

    void oldFeature() {
        System.out.println("Previous Characteristic");
    }
}

We will outline a customer to search out if statements checking for
FeatureToggle.isEnabled, after which change them with the corresponding
true department—just like how we dealt with the characteristic toggle codemod in
JavaScript.

// Customer to take away characteristic toggles
class FeatureToggleVisitor extends VoidVisitorAdapter {
    @Override
    public void go to(IfStmt ifStmt, Void arg) {
        tremendous.go to(ifStmt, arg);
        if (ifStmt.getCondition().isMethodCallExpr()) {
            MethodCallExpr methodCall = ifStmt.getCondition().asMethodCallExpr();
            if (methodCall.getNameAsString().equals("isEnabled") &&
                methodCall.getScope().isPresent() &&
                methodCall.getScope().get().toString().equals("FeatureToggle")) {

                BlockStmt thenBlock = ifStmt.getThenStmt().asBlockStmt();
                ifStmt.change(thenBlock);
            }
        }
    }
}

This code defines a customer sample utilizing
JavaParser to traverse and manipulate the AST. The
FeatureToggleVisitor appears to be like for if statements
that decision FeatureToggle.isEnabled() and replaces the complete
if assertion with the true department.

You too can outline guests to search out unused strategies and take away
them:

class UnusedMethodRemover extends VoidVisitorAdapter {
    non-public Set calledMethods = new HashSet();
    non-public Record methodsToRemove = new ArrayList();

    // Accumulate all known as strategies
    @Override
    public void go to(MethodCallExpr n, Void arg) {
        tremendous.go to(n, arg);
        calledMethods.add(n.getNameAsString());
    }

    // Accumulate strategies to take away if not known as
    @Override
    public void go to(MethodDeclaration n, Void arg) {
        tremendous.go to(n, arg);
        String methodName = n.getNameAsString();
        if (!calledMethods.incorporates(methodName) && !methodName.equals("principal")) {
            methodsToRemove.add(n);
        }
    }

    // After visiting, take away the unused strategies
    public void removeUnusedMethods() {
        for (MethodDeclaration technique : methodsToRemove) {
            technique.take away();
        }
    }
}

This code defines a customer, UnusedMethodRemover, to detect and
take away unused strategies. It tracks all known as strategies within the calledMethods
set and checks every technique declaration. If a way isn’t known as and isn’t
principal, it provides it to the listing of strategies to take away. As soon as all strategies are
processed, it removes any unused strategies from the AST.

Composing Java Guests

You’ll be able to chain these guests collectively and apply them to your codebase
like so:

public class FeatureToggleRemoverWithCleanup {
    public static void principal(String[] args) {
        attempt {
            String filePath = "src/check/java/com/instance/Instance.java";
            CompilationUnit cu = StaticJavaParser.parse(new FileInputStream(filePath));

            // Apply transformations
            FeatureToggleVisitor toggleVisitor = new FeatureToggleVisitor();
            cu.settle for(toggleVisitor, null);

            UnusedMethodRemover remover = new UnusedMethodRemover();
            cu.settle for(remover, null);
            remover.removeUnusedMethods();

            // Write the modified code again to the file
            attempt (FileOutputStream fos = new FileOutputStream(filePath)) {
                fos.write(cu.toString().getBytes());
            }

            System.out.println("Code transformation accomplished efficiently.");
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

Every customer is a unit of transformation, and the customer sample in
JavaParser makes it simple to compose them.

OpenRewrite

One other common choice for Java tasks is OpenRewrite. It makes use of a unique format of the
supply code tree known as Lossless Semantic Bushes (LSTs), which
present extra detailed info in comparison with conventional AST (Summary
Syntax Tree) approaches utilized by instruments like JavaParser or jscodeshift.
Whereas AST focuses on the syntactic construction, LSTs seize each syntax and
semantic which means, enabling extra correct and complicated
transformations.

OpenRewrite additionally has a strong ecosystem of open-source refactoring
recipes for duties comparable to framework migrations, safety fixes, and
sustaining stylistic consistency. This built-in library of recipes can
save builders vital time by permitting them to use standardized
transformations throughout giant codebases while not having to write down customized
scripts.

For builders who want custom-made transformations, OpenRewrite permits
you to create and distribute your personal recipes, making it a extremely versatile
and extensible instrument. It’s extensively used within the Java neighborhood and is
steadily increasing into different languages, because of its superior
capabilities and community-driven strategy.

Variations Between OpenRewrite and JavaParser or jscodeshift

The important thing distinction between OpenRewrite and instruments like JavaParser or
jscodeshift lies of their strategy to code transformation:

  • OpenRewrite’s Lossless Semantic Bushes (LSTs) seize each the
    syntactic and semantic which means of the code, enabling extra correct
    transformations.
  • JavaParser and jscodeshift depend on conventional ASTs, which focus
    totally on the syntactic construction. Whereas highly effective, they could not all the time
    seize the nuances of how the code behaves semantically.

Moreover, OpenRewrite provides a big library of community-driven
refactoring recipes, making it simpler to use widespread transformations with out
needing to write down customized codemods from scratch.

Different Instruments for Codemods

Whereas jscodeshift and OpenRewrite are highly effective instruments, there are
different choices value contemplating, relying in your wants and the ecosystem
you are working in.

Hypermod

Hypermod introduces AI help to the codemod writing course of.
As a substitute of manually crafting the codemod logic, builders can describe
the specified transformation in plain English, and Hypermod will generate
the codemod utilizing jscodeshift. This makes codemod creation extra
accessible, even for builders who is probably not accustomed to AST
manipulation.

You’ll be able to compose, check, and deploy a codemod to any repository
related to Hypermod. It might probably run the codemod and generate a pull
request with the proposed adjustments, permitting you to evaluation and approve
them. This integration makes the complete course of from codemod growth
to deployment far more streamlined.

Codemod.com

Codemod.com is a community-driven platform the place builders
can share and uncover codemods. When you want a particular codemod for a
widespread refactoring process or migration, you’ll be able to seek for current
codemods. Alternatively, you’ll be able to publish codemods you’ve created to assist
others within the developer neighborhood.

When you’re migrating an API and want a codemod to deal with it,
Codemod.com can prevent time by providing pre-built codemods for
many widespread transformations, decreasing the necessity to write one from
scratch.

Conclusion

Codemods are highly effective instruments that enable builders to automate code
transformations, making it simpler to handle API adjustments, refactor legacy
code, and keep consistency throughout giant codebases with minimal guide
intervention. By utilizing instruments like jscodeshift, Hypermod, or
OpenRewrite, builders can streamline all the pieces from minor syntax
adjustments to main part rewrites, bettering total code high quality and
maintainability.

Nonetheless, whereas codemods supply vital advantages, they aren’t
with out challenges. One of many key issues is dealing with edge instances,
notably when the codebase is numerous or publicly shared. Variations
in coding kinds, import aliases, or surprising patterns can result in
points that codemods might not deal with routinely. These edge instances
require cautious planning, thorough testing, and, in some cases, guide
intervention to make sure accuracy.

To maximise the effectiveness of codemods, it’s essential to interrupt
complicated transformations into smaller, testable steps and to make use of code
standardization instruments the place attainable. Codemods could be extremely efficient,
however their success depends upon considerate design and understanding the
limitations they could face in additional diversified or complicated codebases.


Buy JNews
ADVERTISEMENT


As a library developer, chances are you’ll create a preferred utility that a whole lot of
1000’s of builders depend on every day, comparable to lodash or React. Over time,
utilization patterns would possibly emerge that transcend your preliminary design. When this
occurs, chances are you’ll want to increase an API by including parameters or modifying
operate signatures to repair edge instances. The problem lies in rolling out
these breaking adjustments with out disrupting your customers’ workflows.

That is the place codemods are available in—a strong instrument for automating
large-scale code transformations, permitting builders to introduce breaking
API adjustments, refactor legacy codebases, and keep code hygiene with
minimal guide effort.

On this article, we’ll discover what codemods are and the instruments you’ll be able to
use to create them, comparable to jscodeshift, hypermod.io, and codemod.com. We’ll stroll via real-world examples,
from cleansing up characteristic toggles to refactoring part hierarchies.
You’ll additionally discover ways to break down complicated transformations into smaller,
testable items—a follow referred to as codemod composition—to make sure
flexibility and maintainability.

By the tip, you’ll see how codemods can turn out to be an important a part of your
toolkit for managing large-scale codebases, serving to you retain your code clear
and maintainable whereas dealing with even essentially the most difficult refactoring
duties.

Breaking Adjustments in APIs

Returning to the state of affairs of the library developer, after the preliminary
launch, new utilization patterns emerge, prompting the necessity to prolong an
API—maybe by including a parameter or modifying a operate signature to
make it simpler to make use of.

For easy adjustments, a primary find-and-replace within the IDE would possibly work. In
extra complicated instances, you would possibly resort to utilizing instruments like sed
or awk. Nonetheless, when your library is extensively adopted, the
scope of such adjustments turns into more durable to handle. You’ll be able to’t make certain how
extensively the modification will influence your customers, and the very last thing
you need is to interrupt current performance that doesn’t want
updating.

A typical strategy is to announce the breaking change, launch a brand new
model, and ask customers emigrate at their very own tempo. However this workflow,
whereas acquainted, usually would not scale nicely, particularly for main shifts.
Contemplate React’s transition from class parts to operate parts
with hooks—a paradigm shift that took years for big codebases to completely
undertake. By the point groups managed emigrate, extra breaking adjustments had been
usually already on the horizon.

For library builders, this example creates a burden. Sustaining
a number of older variations to assist customers who haven’t migrated is each
pricey and time-consuming. For customers, frequent adjustments threat eroding belief.
They might hesitate to improve or begin exploring extra steady options,
which perpetuating the cycle.

However what in the event you may assist customers handle these adjustments routinely?
What in the event you may launch a instrument alongside your replace that refactors
their code for them—renaming features, updating parameter order, and
eradicating unused code with out requiring guide intervention?

That’s the place codemods are available in. A number of libraries, together with React
and Subsequent.js, have already embraced codemods to easy the trail for model
bumps. For instance, React offers codemods to deal with the migration from
older API patterns, just like the previous Context API, to newer ones.

So, what precisely is the codemod we’re speaking about right here?

What’s a Codemod?

A codemod (code modification) is an automatic script used to remodel
code to observe new APIs, syntax, or coding requirements. Codemods use
Summary Syntax Tree (AST) manipulation to use constant, large-scale
adjustments throughout codebases. Initially developed at Fb, codemods helped
engineers handle refactoring duties for big tasks like React. As
Fb scaled, sustaining the codebase and updating APIs turned
more and more tough, prompting the event of codemods.

Manually updating 1000’s of recordsdata throughout totally different repositories was
inefficient and error-prone, so the idea of codemods—automated scripts
that remodel code—was launched to deal with this downside.

The method sometimes entails three principal steps:

  1. Parsing the code into an AST, the place every a part of the code is
    represented as a tree construction.
  2. Modifying the tree by making use of a change, comparable to renaming a
    operate or altering parameters.
  3. Rewriting the modified tree again into the supply code.

By utilizing this strategy, codemods be certain that adjustments are utilized
constantly throughout each file in a codebase, decreasing the prospect of human
error. Codemods may deal with complicated refactoring eventualities, comparable to
adjustments to deeply nested constructions or eradicating deprecated API utilization.

If we visualize the method, it could look one thing like this:

Determine 1: The three steps of a typical codemod course of

The concept of a program that may “perceive” your code after which carry out
automated transformations isn’t new. That’s how your IDE works once you
run refactorings like Extract Perform, Rename Variable, or Inline Perform.
Basically, your IDE parses the supply code into ASTs and applies
predefined transformations to the tree, saving the outcome again into your
recordsdata.

For contemporary IDEs, many issues occur beneath the hood to make sure adjustments
are utilized appropriately and effectively, comparable to figuring out the scope of
the change and resolving conflicts like variable identify collisions. Some
refactorings even immediate you to enter parameters, comparable to when utilizing
Change Perform Declaration, the place you’ll be able to modify the
order of parameters or default values earlier than finalizing the change.

Use jscodeshift in JavaScript Codebases

Let’s have a look at a concrete instance to know how we may run a
codemod in a JavaScript mission. The JavaScript neighborhood has a number of
instruments that make this work possible, together with parsers that convert supply
code into an AST, in addition to transpilers that may remodel the tree into
different codecs (that is how TypeScript works). Moreover, there are
instruments that assist apply codemods to complete repositories routinely.

One of the common instruments for writing codemods is jscodeshift, a toolkit maintained by Fb.
It simplifies the creation of codemods by offering a strong API to
manipulate ASTs. With jscodeshift, builders can seek for particular
patterns within the code and apply transformations at scale.

You should utilize jscodeshift to determine and change deprecated API calls
with up to date variations throughout a complete mission.

Let’s break down a typical workflow for composing a codemod
manually.

Clear a Stale Characteristic Toggle

Let’s begin with a easy but sensible instance to show the
energy of codemods. Think about you’re utilizing a characteristic
toggle
in your
codebase to regulate the discharge of unfinished or experimental options.
As soon as the characteristic is reside in manufacturing and dealing as anticipated, the following
logical step is to scrub up the toggle and any associated logic.

As an example, take into account the next code:

const information = featureToggle('feature-new-product-list') ? { identify: 'Product' } : undefined;

As soon as the characteristic is absolutely launched and not wants a toggle, this
could be simplified to:

const information = { identify: 'Product' };

The duty entails discovering all cases of featureToggle within the
codebase, checking whether or not the toggle refers to
feature-new-product-list, and eradicating the conditional logic surrounding
it. On the identical time, different characteristic toggles (like
feature-search-result-refinement, which can nonetheless be in growth)
ought to stay untouched. The codemod must perceive the construction
of the code to use adjustments selectively.

Understanding the AST

Earlier than we dive into writing the codemod, let’s break down how this
particular code snippet appears to be like in an AST. You should utilize instruments like AST
Explorer
to visualise how supply code and AST
are mapped. It’s useful to know the node varieties you are interacting
with earlier than making use of any adjustments.

The picture under reveals the syntax tree by way of ECMAScript syntax. It
incorporates nodes like Identifier (for variables), StringLiteral (for the
toggle identify), and extra summary nodes like CallExpression and
ConditionalExpression.

Determine 2: The Summary Syntax Tree illustration of the characteristic toggle examine

On this AST illustration, the variable information is assigned utilizing a
ConditionalExpression. The check a part of the expression calls
featureToggle('feature-new-product-list'). If the check returns true,
the consequent department assigns { identify: 'Product' } to information. If
false, the alternate department assigns undefined.

For a process with clear enter and output, I desire writing checks first,
then implementing the codemod. I begin by defining a destructive case to
guarantee we don’t unintentionally change issues we wish to depart untouched,
adopted by an actual case that performs the precise conversion. I start with
a easy state of affairs, implement it, then add a variation (like checking if
featureToggle is known as inside an if assertion), implement that case, and
guarantee all checks go.

This strategy aligns nicely with Check-Pushed Growth (TDD), even
in the event you don’t follow TDD usually. Realizing precisely what the
transformation’s inputs and outputs are earlier than coding improves security and
effectivity, particularly when tweaking codemods.

With jscodeshift, you’ll be able to write checks to confirm how the codemod
behaves:

const remodel = require("../remove-feature-new-product-list");

defineInlineTest(
  remodel,
  {},
  `
  const information = featureToggle('feature-new-product-list') ? { identify: 'Product' } : undefined;
  `,
  `
  const information = { identify: 'Product' };
  `,
  "delete the toggle feature-new-product-list in conditional operator"
);

The defineInlineTest operate from jscodeshift lets you outline
the enter, anticipated output, and a string describing the check’s intent.
Now, working the check with a traditional jest command will fail as a result of the
codemod isn’t written but.

The corresponding destructive case would make sure the code stays unchanged
for different characteristic toggles:

defineInlineTest(
  remodel,
  {},
  `
  const information = featureToggle('feature-search-result-refinement') ? { identify: 'Product' } : undefined;
  `,
  `
  const information = featureToggle('feature-search-result-refinement') ? { identify: 'Product' } : undefined;
  `,
  "don't change different characteristic toggles"
);

Writing the Codemod

Let’s begin by defining a easy remodel operate. Create a file
known as remodel.js with the next code construction:

module.exports = operate(fileInfo, api, choices) {
  const j = api.jscodeshift;
  const root = j(fileInfo.supply);

  // manipulate the tree nodes right here

  return root.toSource();
};

This operate reads the file right into a tree and makes use of jscodeshift’s API to
question, modify, and replace the nodes. Lastly, it converts the AST again to
supply code with .toSource().

Now we are able to begin implementing the remodel steps:

  1. Discover all cases of featureToggle.
  2. Confirm that the argument handed is 'feature-new-product-list'.
  3. Exchange the complete conditional expression with the consequent half,
    successfully eradicating the toggle.

Right here’s how we obtain this utilizing jscodeshift:

module.exports = operate (fileInfo, api, choices) {
  const j = api.jscodeshift;
  const root = j(fileInfo.supply);

  // Discover ConditionalExpression the place the check is featureToggle('feature-new-product-list')
  root
    .discover(j.ConditionalExpression, {
      check: {
        callee: { identify: "featureToggle" },
        arguments: [{ value: "feature-new-product-list" }],
      },
    })
    .forEach((path) => {
      // Exchange the ConditionalExpression with the 'consequent'
      j(path).replaceWith(path.node.consequent);
    });

  return root.toSource();
};

The codemod above:

  • Finds ConditionalExpression nodes the place the check calls
    featureToggle('feature-new-product-list').
  • Replaces the complete conditional expression with the ensuing (i.e., {
    identify: 'Product' }
    ), eradicating the toggle logic and leaving simplified code
    behind.

This instance demonstrates how simple it’s to create a helpful
transformation and apply it to a big codebase, considerably decreasing
guide effort.

You’ll want to write down extra check instances to deal with variations like
if-else statements, logical expressions (e.g.,
!featureToggle('feature-new-product-list')), and so forth to make the
codemod strong in real-world eventualities.

As soon as the codemod is prepared, you’ll be able to try it out on a goal codebase,
such because the one you are engaged on. jscodeshift offers a command-line
instrument that you should utilize to use the codemod and report the outcomes.

$ jscodeshift -t transform-name src/

After validating the outcomes, examine that each one useful checks nonetheless
go and that nothing breaks—even in the event you’re introducing a breaking change.
As soon as happy, you’ll be able to commit the adjustments and lift a pull request as
a part of your regular workflow.

Codemods Enhance Code High quality and Maintainability

Codemods aren’t simply helpful for managing breaking API adjustments—they will
considerably enhance code high quality and maintainability. As codebases
evolve, they usually accumulate technical debt, together with outdated characteristic
toggles, deprecated strategies, or tightly coupled parts. Manually
refactoring these areas could be time-consuming and error-prone.

By automating refactoring duties, codemods assist maintain your codebase clear
and freed from legacy patterns. Usually making use of codemods lets you
implement new coding requirements, take away unused code, and modernize your
codebase with out having to manually modify each file.

Refactoring an Avatar Part

Now, let’s have a look at a extra complicated instance. Suppose you’re working with
a design system that features an Avatar part tightly coupled with a
Tooltip. Each time a person passes a identify prop into the Avatar, it
routinely wraps the avatar with a tooltip.

Determine 3: A avatar part with a tooltip

Right here’s the present Avatar implementation:

import { Tooltip } from "@design-system/tooltip";

const Avatar = ({ identify, picture }: AvatarProps) => {
  if (identify) {
    return (
      
        
      
    );
  }

  return ;
};

The objective is to decouple the Tooltip from the Avatar part,
giving builders extra flexibility. Builders ought to have the ability to determine
whether or not to wrap the Avatar in a Tooltip. Within the refactored model,
Avatar will merely render the picture, and customers can apply a Tooltip
manually if wanted.

Right here’s the refactored model of Avatar:

const Avatar = ({ picture }: AvatarProps) => {
  return ;
};

Now, customers can manually wrap the Avatar with a Tooltip as
wanted:

import { Tooltip } from "@design-system/tooltip";
import { Avatar } from "@design-system/avatar";

const UserProfile = () => {
  return (
    
      
    
  );
};

The problem arises when there are a whole lot of Avatar usages unfold
throughout the codebase. Manually refactoring every occasion could be extremely
inefficient, so we are able to use a codemod to automate this course of.

Utilizing instruments like AST Explorer, we are able to
examine the part and see which nodes characterize the Avatar utilization
we’re concentrating on. An Avatar part with each identify and picture props
is parsed into an summary syntax tree as proven under:

Determine 4: AST of the Avatar part utilization

Writing the Codemod

Let’s break down the transformation into smaller duties:

  • Discover Avatar utilization within the part tree.
  • Verify if the identify prop is current.
    • If not, do nothing.
    • If current:
      • Create a Tooltip node.
      • Add the identify to the Tooltip.
      • Take away the identify from Avatar.
      • Add Avatar as a baby of the Tooltip.
      • Exchange the unique Avatar node with the brand new Tooltip.

To start, we’ll discover all cases of Avatar (I’ll omit a number of the
checks, however it’s best to write comparability checks first).

defineInlineTest(
    { default: remodel, parser: "tsx" },
    {},
    `
    
    `,
    `
    
      
    
    `,
    "wrap avatar with tooltip when identify is supplied"
  );

Much like the featureToggle instance, we are able to use root.discover with
search standards to find all Avatar nodes:

root
  .discover(j.JSXElement, {
    openingElement: { identify: { identify: "Avatar" } },
  })
  .forEach((path) => {
    // now we are able to deal with every Avatar occasion
  });

Subsequent, we examine if the identify prop is current:

root
  .discover(j.JSXElement, {
    openingElement: { identify: { identify: "Avatar" } },
  })
  .forEach((path) => {
    const avatarNode = path.node;

    const nameAttr = avatarNode.openingElement.attributes.discover(
      (attr) => attr.identify.identify === "identify"
    );

    if (nameAttr) {
      const tooltipElement = createTooltipElement(
        nameAttr.worth.worth,
        avatarNode
      );
      j(path).replaceWith(tooltipElement);
    }
  });

For the createTooltipElement operate, we use the
jscodeshift API to create a brand new JSX node, with the identify
prop utilized to the Tooltip and the Avatar
part as a baby. Lastly, we name replaceWith to
change the present path.

Right here’s a preview of the way it appears to be like in
Hypermod, the place the codemod is written on
the left. The highest half on the fitting is the unique code, and the underside
half is the reworked outcome:

Determine 5: Run checks inside hypermod earlier than apply it to your codebase

This codemod searches for all cases of Avatar. If a
identify prop is discovered, it removes the identify prop
from Avatar, wraps the Avatar inside a
Tooltip, and passes the identify prop to the
Tooltip.

By now, I hope it’s clear that codemods are extremely helpful and
that the workflow is intuitive, particularly for large-scale adjustments the place
guide updates could be an enormous burden. Nonetheless, that is not the entire
image. Within the subsequent part, I’ll make clear a number of the challenges
and the way we are able to tackle these less-than-ideal points.

Fixing Widespread Pitfalls of Codemods

As a seasoned developer, you understand the “completely satisfied path” is just a small half
of the total image. There are quite a few eventualities to contemplate when writing
a change script to deal with code routinely.

Builders write code in quite a lot of kinds. For instance, somebody
would possibly import the Avatar part however give it a unique identify as a result of
they may have one other Avatar part from a unique package deal:

import { Avatar as AKAvatar } from "@design-system/avatar";

const UserInfo = () => (
  AKAvatar identify="Juntao Qiu" picture="/juntao.qiu.avatar.png" />
);

A easy textual content seek for Avatar gained’t work on this case. You’ll want
to detect the alias and apply the transformation utilizing the right
identify.

One other instance arises when coping with Tooltip imports. If the file
already imports Tooltip however makes use of an alias, the codemod should detect that
alias and apply the adjustments accordingly. You’ll be able to’t assume that the
part named Tooltip is all the time the one you’re searching for.

Within the characteristic toggle instance, somebody would possibly use
if(featureToggle('feature-new-product-list')), or assign the results of
the toggle operate to a variable earlier than utilizing it:

const shouldEnableNewFeature = featureToggle('feature-new-product-list');

if (shouldEnableNewFeature) {
  //...
}

They may even use the toggle with different circumstances or apply logical
negation, making the logic extra complicated:

const shouldEnableNewFeature = featureToggle('feature-new-product-list');

if (!shouldEnableNewFeature && someOtherLogic) {
  //...
}

These variations make it tough to foresee each edge case,
rising the danger of unintentionally breaking one thing. Relying solely
on the instances you’ll be able to anticipate just isn’t sufficient. You want thorough testing
to keep away from breaking unintended components of the code.

Leveraging Supply Graphs and Check-Pushed Codemods

To deal with these complexities, codemods ought to be used alongside different
methods. As an example, just a few years in the past, I participated in a design
system parts rewrite mission at Atlassian. We addressed this subject by
first looking out the supply graph, which contained nearly all of inside
part utilization. This allowed us to know how parts had been used,
whether or not they had been imported beneath totally different names, or whether or not sure
public props had been ceaselessly used. After this search section, we wrote our
check instances upfront, making certain we coated nearly all of use instances, and
then developed the codemod.

In conditions the place we could not confidently automate the improve, we
inserted feedback or “TODOs” on the name websites. This allowed the
builders working the script to deal with particular instances manually. Often,
there have been solely a handful of such cases, so this strategy nonetheless proved
useful for upgrading variations.

Using Present Code Standardization Instruments

As you’ll be able to see, there are many edge instances to deal with, particularly in
codebases past your management—comparable to exterior dependencies. This
complexity signifies that utilizing codemods requires cautious supervision and a
evaluation of the outcomes.

Nonetheless, in case your codebase has standardization instruments in place, comparable to a
linter that enforces a selected coding type, you’ll be able to leverage these
instruments to cut back edge instances. By implementing a constant construction, instruments
like linters assist slender down the variations in code, making the
transformation simpler and minimizing surprising points.

As an example, you might use linting guidelines to limit sure patterns,
comparable to avoiding nested conditional (ternary) operators or implementing named
exports over default exports. These guidelines assist streamline the codebase,
making codemods extra predictable and efficient.

Moreover, breaking down complicated transformations into smaller, extra
manageable ones lets you deal with particular person points extra exactly. As
we’ll quickly see, composing smaller codemods could make dealing with complicated
adjustments extra possible.

Codemod Composition

Let’s revisit the characteristic toggle elimination instance mentioned earlier. Within the code snippet
we have now a toggle known as feature-convert-new must be eliminated:

import { featureToggle } from "./utils/featureToggle";

const convertOld = (enter: string) => {
  return enter.toLowerCase();
};

const convertNew = (enter: string) => {
  return enter.toUpperCase();
};

const outcome = featureToggle("feature-convert-new")
  ? convertNew("Good day, world")
  : convertOld("Good day, world");

console.log(outcome);

The codemod for take away a given toggle works high-quality, and after working the codemod,
we would like the supply to appear like this:

const convertNew = (enter: string) => {
  return enter.toUpperCase();
};

const outcome = convertNew("Good day, world");

console.log(outcome);

Nonetheless, past eradicating the characteristic toggle logic, there are further duties to
deal with:

  • Take away the unused convertOld operate.
  • Clear up the unused featureToggle import.

After all, you might write one huge codemod to deal with all the pieces in a
single go and check it collectively. Nonetheless, a extra maintainable strategy is
to deal with codemod logic like product code: break the duty into smaller,
impartial items—identical to how you’d usually refactor manufacturing
code.

Breaking It Down

We will break the massive transformation down into smaller codemods and
compose them. The benefit of this strategy is that every transformation
could be examined individually, masking totally different instances with out interference.
Furthermore, it lets you reuse and compose them for various
functions.

As an example, you would possibly break it down like this:

  • A metamorphosis to take away a particular characteristic toggle.
  • One other transformation to scrub up unused imports.
  • A metamorphosis to take away unused operate declarations.

By composing these, you’ll be able to create a pipeline of transformations:

import { removeFeatureToggle } from "./remove-feature-toggle";
import { removeUnusedImport } from "./remove-unused-import";
import { removeUnusedFunction } from "./remove-unused-function";

import { createTransformer } from "./utils";

const removeFeatureConvertNew = removeFeatureToggle("feature-convert-new");

const remodel = createTransformer([
  removeFeatureConvertNew,
  removeUnusedImport,
  removeUnusedFunction,
]);

export default remodel;

On this pipeline, the transformations work as follows:

  1. Take away the feature-convert-new toggle.
  2. Clear up the unused import assertion.
  3. Take away the convertOld operate because it’s not used.

Determine 6: Compose transforms into a brand new remodel

You too can extract further codemods as wanted, combining them in
numerous orders relying on the specified final result.

Determine 7: Put totally different transforms right into a pipepline to kind one other remodel

The createTransformer Perform

The implementation of the createTransformer operate is comparatively
simple. It acts as a higher-order operate that takes an inventory of
smaller remodel features, iterates via the listing to use them to
the foundation AST, and at last converts the modified AST again into supply
code.

import { API, Assortment, FileInfo, JSCodeshift, Choices } from "jscodeshift";

kind TransformFunction = { (j: JSCodeshift, root: Assortment): void };

const createTransformer =
  (transforms: TransformFunction[]) =>
  (fileInfo: FileInfo, api: API, choices: Choices) => {
    const j = api.jscodeshift;
    const root = j(fileInfo.supply);

    transforms.forEach((remodel) => remodel(j, root));
    return root.toSource(choices.printOptions || { quote: "single" });
  };

export { createTransformer };

For instance, you might have a remodel operate that inlines
expressions assigning the characteristic toggle name to a variable, so in later
transforms you don’t have to fret about these instances anymore:

const shouldEnableNewFeature = featureToggle('feature-convert-new');

if (!shouldEnableNewFeature && someOtherLogic) {
  //...
}

Turns into this:

if (!featureToggle('feature-convert-new') && someOtherLogic) {
  //...
}

Over time, you would possibly construct up a set of reusable, smaller
transforms, which might significantly ease the method of dealing with tough edge
instances. This strategy proved extremely efficient in our work refining design
system parts. As soon as we transformed one package deal—such because the button
part—we had just a few reusable transforms outlined, like including feedback
initially of features, eradicating deprecated props, or creating aliases
when a package deal is already imported above.

Every of those smaller transforms could be examined and used independently
or mixed for extra complicated transformations, which hurries up subsequent
conversions considerably. Consequently, our refinement work turned extra
environment friendly, and these generic codemods at the moment are relevant to different inside
and even exterior React codebases.

Since every remodel is comparatively standalone, you’ll be able to fine-tune them
with out affecting different transforms or the extra complicated, composed ones. For
occasion, you would possibly re-implement a remodel to enhance efficiency—like
decreasing the variety of node-finding rounds—and with complete check
protection, you are able to do this confidently and safely.

Codemods in Different Languages

Whereas the examples we’ve explored to date give attention to JavaScript and JSX
utilizing jscodeshift, codemods will also be utilized to different languages. For
occasion, JavaParser provides an identical
mechanism in Java, utilizing AST manipulation to refactor Java code.

Utilizing JavaParser in a Java Codebase

JavaParser could be helpful for making breaking API adjustments or refactoring
giant Java codebases in a structured, automated method.

Assume we have now the next code in FeatureToggleExample.java, which
checks the toggle feature-convert-new and branches accordingly:

public class FeatureToggleExample {
    public void execute() {
        if (FeatureToggle.isEnabled("feature-convert-new")) {
          newFeature();
        } else {
          oldFeature();
        }
    }

    void newFeature() {
        System.out.println("New Characteristic Enabled");
    }

    void oldFeature() {
        System.out.println("Previous Characteristic");
    }
}

We will outline a customer to search out if statements checking for
FeatureToggle.isEnabled, after which change them with the corresponding
true department—just like how we dealt with the characteristic toggle codemod in
JavaScript.

// Customer to take away characteristic toggles
class FeatureToggleVisitor extends VoidVisitorAdapter {
    @Override
    public void go to(IfStmt ifStmt, Void arg) {
        tremendous.go to(ifStmt, arg);
        if (ifStmt.getCondition().isMethodCallExpr()) {
            MethodCallExpr methodCall = ifStmt.getCondition().asMethodCallExpr();
            if (methodCall.getNameAsString().equals("isEnabled") &&
                methodCall.getScope().isPresent() &&
                methodCall.getScope().get().toString().equals("FeatureToggle")) {

                BlockStmt thenBlock = ifStmt.getThenStmt().asBlockStmt();
                ifStmt.change(thenBlock);
            }
        }
    }
}

This code defines a customer sample utilizing
JavaParser to traverse and manipulate the AST. The
FeatureToggleVisitor appears to be like for if statements
that decision FeatureToggle.isEnabled() and replaces the complete
if assertion with the true department.

You too can outline guests to search out unused strategies and take away
them:

class UnusedMethodRemover extends VoidVisitorAdapter {
    non-public Set calledMethods = new HashSet();
    non-public Record methodsToRemove = new ArrayList();

    // Accumulate all known as strategies
    @Override
    public void go to(MethodCallExpr n, Void arg) {
        tremendous.go to(n, arg);
        calledMethods.add(n.getNameAsString());
    }

    // Accumulate strategies to take away if not known as
    @Override
    public void go to(MethodDeclaration n, Void arg) {
        tremendous.go to(n, arg);
        String methodName = n.getNameAsString();
        if (!calledMethods.incorporates(methodName) && !methodName.equals("principal")) {
            methodsToRemove.add(n);
        }
    }

    // After visiting, take away the unused strategies
    public void removeUnusedMethods() {
        for (MethodDeclaration technique : methodsToRemove) {
            technique.take away();
        }
    }
}

This code defines a customer, UnusedMethodRemover, to detect and
take away unused strategies. It tracks all known as strategies within the calledMethods
set and checks every technique declaration. If a way isn’t known as and isn’t
principal, it provides it to the listing of strategies to take away. As soon as all strategies are
processed, it removes any unused strategies from the AST.

Composing Java Guests

You’ll be able to chain these guests collectively and apply them to your codebase
like so:

public class FeatureToggleRemoverWithCleanup {
    public static void principal(String[] args) {
        attempt {
            String filePath = "src/check/java/com/instance/Instance.java";
            CompilationUnit cu = StaticJavaParser.parse(new FileInputStream(filePath));

            // Apply transformations
            FeatureToggleVisitor toggleVisitor = new FeatureToggleVisitor();
            cu.settle for(toggleVisitor, null);

            UnusedMethodRemover remover = new UnusedMethodRemover();
            cu.settle for(remover, null);
            remover.removeUnusedMethods();

            // Write the modified code again to the file
            attempt (FileOutputStream fos = new FileOutputStream(filePath)) {
                fos.write(cu.toString().getBytes());
            }

            System.out.println("Code transformation accomplished efficiently.");
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

Every customer is a unit of transformation, and the customer sample in
JavaParser makes it simple to compose them.

OpenRewrite

One other common choice for Java tasks is OpenRewrite. It makes use of a unique format of the
supply code tree known as Lossless Semantic Bushes (LSTs), which
present extra detailed info in comparison with conventional AST (Summary
Syntax Tree) approaches utilized by instruments like JavaParser or jscodeshift.
Whereas AST focuses on the syntactic construction, LSTs seize each syntax and
semantic which means, enabling extra correct and complicated
transformations.

OpenRewrite additionally has a strong ecosystem of open-source refactoring
recipes for duties comparable to framework migrations, safety fixes, and
sustaining stylistic consistency. This built-in library of recipes can
save builders vital time by permitting them to use standardized
transformations throughout giant codebases while not having to write down customized
scripts.

For builders who want custom-made transformations, OpenRewrite permits
you to create and distribute your personal recipes, making it a extremely versatile
and extensible instrument. It’s extensively used within the Java neighborhood and is
steadily increasing into different languages, because of its superior
capabilities and community-driven strategy.

Variations Between OpenRewrite and JavaParser or jscodeshift

The important thing distinction between OpenRewrite and instruments like JavaParser or
jscodeshift lies of their strategy to code transformation:

  • OpenRewrite’s Lossless Semantic Bushes (LSTs) seize each the
    syntactic and semantic which means of the code, enabling extra correct
    transformations.
  • JavaParser and jscodeshift depend on conventional ASTs, which focus
    totally on the syntactic construction. Whereas highly effective, they could not all the time
    seize the nuances of how the code behaves semantically.

Moreover, OpenRewrite provides a big library of community-driven
refactoring recipes, making it simpler to use widespread transformations with out
needing to write down customized codemods from scratch.

Different Instruments for Codemods

Whereas jscodeshift and OpenRewrite are highly effective instruments, there are
different choices value contemplating, relying in your wants and the ecosystem
you are working in.

Hypermod

Hypermod introduces AI help to the codemod writing course of.
As a substitute of manually crafting the codemod logic, builders can describe
the specified transformation in plain English, and Hypermod will generate
the codemod utilizing jscodeshift. This makes codemod creation extra
accessible, even for builders who is probably not accustomed to AST
manipulation.

You’ll be able to compose, check, and deploy a codemod to any repository
related to Hypermod. It might probably run the codemod and generate a pull
request with the proposed adjustments, permitting you to evaluation and approve
them. This integration makes the complete course of from codemod growth
to deployment far more streamlined.

Codemod.com

Codemod.com is a community-driven platform the place builders
can share and uncover codemods. When you want a particular codemod for a
widespread refactoring process or migration, you’ll be able to seek for current
codemods. Alternatively, you’ll be able to publish codemods you’ve created to assist
others within the developer neighborhood.

When you’re migrating an API and want a codemod to deal with it,
Codemod.com can prevent time by providing pre-built codemods for
many widespread transformations, decreasing the necessity to write one from
scratch.

Conclusion

Codemods are highly effective instruments that enable builders to automate code
transformations, making it simpler to handle API adjustments, refactor legacy
code, and keep consistency throughout giant codebases with minimal guide
intervention. By utilizing instruments like jscodeshift, Hypermod, or
OpenRewrite, builders can streamline all the pieces from minor syntax
adjustments to main part rewrites, bettering total code high quality and
maintainability.

Nonetheless, whereas codemods supply vital advantages, they aren’t
with out challenges. One of many key issues is dealing with edge instances,
notably when the codebase is numerous or publicly shared. Variations
in coding kinds, import aliases, or surprising patterns can result in
points that codemods might not deal with routinely. These edge instances
require cautious planning, thorough testing, and, in some cases, guide
intervention to make sure accuracy.

To maximise the effectiveness of codemods, it’s essential to interrupt
complicated transformations into smaller, testable steps and to make use of code
standardization instruments the place attainable. Codemods could be extremely efficient,
however their success depends upon considerate design and understanding the
limitations they could face in additional diversified or complicated codebases.


RELATED POSTS

My favourite musical discoveries of 2024

Refactoring with Codemods to Automate API Adjustments

Rising the Growth Forest 🌲 — with Martin Fowler


As a library developer, chances are you’ll create a preferred utility that a whole lot of
1000’s of builders depend on every day, comparable to lodash or React. Over time,
utilization patterns would possibly emerge that transcend your preliminary design. When this
occurs, chances are you’ll want to increase an API by including parameters or modifying
operate signatures to repair edge instances. The problem lies in rolling out
these breaking adjustments with out disrupting your customers’ workflows.

That is the place codemods are available in—a strong instrument for automating
large-scale code transformations, permitting builders to introduce breaking
API adjustments, refactor legacy codebases, and keep code hygiene with
minimal guide effort.

On this article, we’ll discover what codemods are and the instruments you’ll be able to
use to create them, comparable to jscodeshift, hypermod.io, and codemod.com. We’ll stroll via real-world examples,
from cleansing up characteristic toggles to refactoring part hierarchies.
You’ll additionally discover ways to break down complicated transformations into smaller,
testable items—a follow referred to as codemod composition—to make sure
flexibility and maintainability.

By the tip, you’ll see how codemods can turn out to be an important a part of your
toolkit for managing large-scale codebases, serving to you retain your code clear
and maintainable whereas dealing with even essentially the most difficult refactoring
duties.

Breaking Adjustments in APIs

Returning to the state of affairs of the library developer, after the preliminary
launch, new utilization patterns emerge, prompting the necessity to prolong an
API—maybe by including a parameter or modifying a operate signature to
make it simpler to make use of.

For easy adjustments, a primary find-and-replace within the IDE would possibly work. In
extra complicated instances, you would possibly resort to utilizing instruments like sed
or awk. Nonetheless, when your library is extensively adopted, the
scope of such adjustments turns into more durable to handle. You’ll be able to’t make certain how
extensively the modification will influence your customers, and the very last thing
you need is to interrupt current performance that doesn’t want
updating.

A typical strategy is to announce the breaking change, launch a brand new
model, and ask customers emigrate at their very own tempo. However this workflow,
whereas acquainted, usually would not scale nicely, particularly for main shifts.
Contemplate React’s transition from class parts to operate parts
with hooks—a paradigm shift that took years for big codebases to completely
undertake. By the point groups managed emigrate, extra breaking adjustments had been
usually already on the horizon.

For library builders, this example creates a burden. Sustaining
a number of older variations to assist customers who haven’t migrated is each
pricey and time-consuming. For customers, frequent adjustments threat eroding belief.
They might hesitate to improve or begin exploring extra steady options,
which perpetuating the cycle.

However what in the event you may assist customers handle these adjustments routinely?
What in the event you may launch a instrument alongside your replace that refactors
their code for them—renaming features, updating parameter order, and
eradicating unused code with out requiring guide intervention?

That’s the place codemods are available in. A number of libraries, together with React
and Subsequent.js, have already embraced codemods to easy the trail for model
bumps. For instance, React offers codemods to deal with the migration from
older API patterns, just like the previous Context API, to newer ones.

So, what precisely is the codemod we’re speaking about right here?

What’s a Codemod?

A codemod (code modification) is an automatic script used to remodel
code to observe new APIs, syntax, or coding requirements. Codemods use
Summary Syntax Tree (AST) manipulation to use constant, large-scale
adjustments throughout codebases. Initially developed at Fb, codemods helped
engineers handle refactoring duties for big tasks like React. As
Fb scaled, sustaining the codebase and updating APIs turned
more and more tough, prompting the event of codemods.

Manually updating 1000’s of recordsdata throughout totally different repositories was
inefficient and error-prone, so the idea of codemods—automated scripts
that remodel code—was launched to deal with this downside.

The method sometimes entails three principal steps:

  1. Parsing the code into an AST, the place every a part of the code is
    represented as a tree construction.
  2. Modifying the tree by making use of a change, comparable to renaming a
    operate or altering parameters.
  3. Rewriting the modified tree again into the supply code.

By utilizing this strategy, codemods be certain that adjustments are utilized
constantly throughout each file in a codebase, decreasing the prospect of human
error. Codemods may deal with complicated refactoring eventualities, comparable to
adjustments to deeply nested constructions or eradicating deprecated API utilization.

If we visualize the method, it could look one thing like this:

Determine 1: The three steps of a typical codemod course of

The concept of a program that may “perceive” your code after which carry out
automated transformations isn’t new. That’s how your IDE works once you
run refactorings like Extract Perform, Rename Variable, or Inline Perform.
Basically, your IDE parses the supply code into ASTs and applies
predefined transformations to the tree, saving the outcome again into your
recordsdata.

For contemporary IDEs, many issues occur beneath the hood to make sure adjustments
are utilized appropriately and effectively, comparable to figuring out the scope of
the change and resolving conflicts like variable identify collisions. Some
refactorings even immediate you to enter parameters, comparable to when utilizing
Change Perform Declaration, the place you’ll be able to modify the
order of parameters or default values earlier than finalizing the change.

Use jscodeshift in JavaScript Codebases

Let’s have a look at a concrete instance to know how we may run a
codemod in a JavaScript mission. The JavaScript neighborhood has a number of
instruments that make this work possible, together with parsers that convert supply
code into an AST, in addition to transpilers that may remodel the tree into
different codecs (that is how TypeScript works). Moreover, there are
instruments that assist apply codemods to complete repositories routinely.

One of the common instruments for writing codemods is jscodeshift, a toolkit maintained by Fb.
It simplifies the creation of codemods by offering a strong API to
manipulate ASTs. With jscodeshift, builders can seek for particular
patterns within the code and apply transformations at scale.

You should utilize jscodeshift to determine and change deprecated API calls
with up to date variations throughout a complete mission.

Let’s break down a typical workflow for composing a codemod
manually.

Clear a Stale Characteristic Toggle

Let’s begin with a easy but sensible instance to show the
energy of codemods. Think about you’re utilizing a characteristic
toggle
in your
codebase to regulate the discharge of unfinished or experimental options.
As soon as the characteristic is reside in manufacturing and dealing as anticipated, the following
logical step is to scrub up the toggle and any associated logic.

As an example, take into account the next code:

const information = featureToggle('feature-new-product-list') ? { identify: 'Product' } : undefined;

As soon as the characteristic is absolutely launched and not wants a toggle, this
could be simplified to:

const information = { identify: 'Product' };

The duty entails discovering all cases of featureToggle within the
codebase, checking whether or not the toggle refers to
feature-new-product-list, and eradicating the conditional logic surrounding
it. On the identical time, different characteristic toggles (like
feature-search-result-refinement, which can nonetheless be in growth)
ought to stay untouched. The codemod must perceive the construction
of the code to use adjustments selectively.

Understanding the AST

Earlier than we dive into writing the codemod, let’s break down how this
particular code snippet appears to be like in an AST. You should utilize instruments like AST
Explorer
to visualise how supply code and AST
are mapped. It’s useful to know the node varieties you are interacting
with earlier than making use of any adjustments.

The picture under reveals the syntax tree by way of ECMAScript syntax. It
incorporates nodes like Identifier (for variables), StringLiteral (for the
toggle identify), and extra summary nodes like CallExpression and
ConditionalExpression.

Determine 2: The Summary Syntax Tree illustration of the characteristic toggle examine

On this AST illustration, the variable information is assigned utilizing a
ConditionalExpression. The check a part of the expression calls
featureToggle('feature-new-product-list'). If the check returns true,
the consequent department assigns { identify: 'Product' } to information. If
false, the alternate department assigns undefined.

For a process with clear enter and output, I desire writing checks first,
then implementing the codemod. I begin by defining a destructive case to
guarantee we don’t unintentionally change issues we wish to depart untouched,
adopted by an actual case that performs the precise conversion. I start with
a easy state of affairs, implement it, then add a variation (like checking if
featureToggle is known as inside an if assertion), implement that case, and
guarantee all checks go.

This strategy aligns nicely with Check-Pushed Growth (TDD), even
in the event you don’t follow TDD usually. Realizing precisely what the
transformation’s inputs and outputs are earlier than coding improves security and
effectivity, particularly when tweaking codemods.

With jscodeshift, you’ll be able to write checks to confirm how the codemod
behaves:

const remodel = require("../remove-feature-new-product-list");

defineInlineTest(
  remodel,
  {},
  `
  const information = featureToggle('feature-new-product-list') ? { identify: 'Product' } : undefined;
  `,
  `
  const information = { identify: 'Product' };
  `,
  "delete the toggle feature-new-product-list in conditional operator"
);

The defineInlineTest operate from jscodeshift lets you outline
the enter, anticipated output, and a string describing the check’s intent.
Now, working the check with a traditional jest command will fail as a result of the
codemod isn’t written but.

The corresponding destructive case would make sure the code stays unchanged
for different characteristic toggles:

defineInlineTest(
  remodel,
  {},
  `
  const information = featureToggle('feature-search-result-refinement') ? { identify: 'Product' } : undefined;
  `,
  `
  const information = featureToggle('feature-search-result-refinement') ? { identify: 'Product' } : undefined;
  `,
  "don't change different characteristic toggles"
);

Writing the Codemod

Let’s begin by defining a easy remodel operate. Create a file
known as remodel.js with the next code construction:

module.exports = operate(fileInfo, api, choices) {
  const j = api.jscodeshift;
  const root = j(fileInfo.supply);

  // manipulate the tree nodes right here

  return root.toSource();
};

This operate reads the file right into a tree and makes use of jscodeshift’s API to
question, modify, and replace the nodes. Lastly, it converts the AST again to
supply code with .toSource().

Now we are able to begin implementing the remodel steps:

  1. Discover all cases of featureToggle.
  2. Confirm that the argument handed is 'feature-new-product-list'.
  3. Exchange the complete conditional expression with the consequent half,
    successfully eradicating the toggle.

Right here’s how we obtain this utilizing jscodeshift:

module.exports = operate (fileInfo, api, choices) {
  const j = api.jscodeshift;
  const root = j(fileInfo.supply);

  // Discover ConditionalExpression the place the check is featureToggle('feature-new-product-list')
  root
    .discover(j.ConditionalExpression, {
      check: {
        callee: { identify: "featureToggle" },
        arguments: [{ value: "feature-new-product-list" }],
      },
    })
    .forEach((path) => {
      // Exchange the ConditionalExpression with the 'consequent'
      j(path).replaceWith(path.node.consequent);
    });

  return root.toSource();
};

The codemod above:

  • Finds ConditionalExpression nodes the place the check calls
    featureToggle('feature-new-product-list').
  • Replaces the complete conditional expression with the ensuing (i.e., {
    identify: 'Product' }
    ), eradicating the toggle logic and leaving simplified code
    behind.

This instance demonstrates how simple it’s to create a helpful
transformation and apply it to a big codebase, considerably decreasing
guide effort.

You’ll want to write down extra check instances to deal with variations like
if-else statements, logical expressions (e.g.,
!featureToggle('feature-new-product-list')), and so forth to make the
codemod strong in real-world eventualities.

As soon as the codemod is prepared, you’ll be able to try it out on a goal codebase,
such because the one you are engaged on. jscodeshift offers a command-line
instrument that you should utilize to use the codemod and report the outcomes.

$ jscodeshift -t transform-name src/

After validating the outcomes, examine that each one useful checks nonetheless
go and that nothing breaks—even in the event you’re introducing a breaking change.
As soon as happy, you’ll be able to commit the adjustments and lift a pull request as
a part of your regular workflow.

Codemods Enhance Code High quality and Maintainability

Codemods aren’t simply helpful for managing breaking API adjustments—they will
considerably enhance code high quality and maintainability. As codebases
evolve, they usually accumulate technical debt, together with outdated characteristic
toggles, deprecated strategies, or tightly coupled parts. Manually
refactoring these areas could be time-consuming and error-prone.

By automating refactoring duties, codemods assist maintain your codebase clear
and freed from legacy patterns. Usually making use of codemods lets you
implement new coding requirements, take away unused code, and modernize your
codebase with out having to manually modify each file.

Refactoring an Avatar Part

Now, let’s have a look at a extra complicated instance. Suppose you’re working with
a design system that features an Avatar part tightly coupled with a
Tooltip. Each time a person passes a identify prop into the Avatar, it
routinely wraps the avatar with a tooltip.

Determine 3: A avatar part with a tooltip

Right here’s the present Avatar implementation:

import { Tooltip } from "@design-system/tooltip";

const Avatar = ({ identify, picture }: AvatarProps) => {
  if (identify) {
    return (
      
        
      
    );
  }

  return ;
};

The objective is to decouple the Tooltip from the Avatar part,
giving builders extra flexibility. Builders ought to have the ability to determine
whether or not to wrap the Avatar in a Tooltip. Within the refactored model,
Avatar will merely render the picture, and customers can apply a Tooltip
manually if wanted.

Right here’s the refactored model of Avatar:

const Avatar = ({ picture }: AvatarProps) => {
  return ;
};

Now, customers can manually wrap the Avatar with a Tooltip as
wanted:

import { Tooltip } from "@design-system/tooltip";
import { Avatar } from "@design-system/avatar";

const UserProfile = () => {
  return (
    
      
    
  );
};

The problem arises when there are a whole lot of Avatar usages unfold
throughout the codebase. Manually refactoring every occasion could be extremely
inefficient, so we are able to use a codemod to automate this course of.

Utilizing instruments like AST Explorer, we are able to
examine the part and see which nodes characterize the Avatar utilization
we’re concentrating on. An Avatar part with each identify and picture props
is parsed into an summary syntax tree as proven under:

Determine 4: AST of the Avatar part utilization

Writing the Codemod

Let’s break down the transformation into smaller duties:

  • Discover Avatar utilization within the part tree.
  • Verify if the identify prop is current.
    • If not, do nothing.
    • If current:
      • Create a Tooltip node.
      • Add the identify to the Tooltip.
      • Take away the identify from Avatar.
      • Add Avatar as a baby of the Tooltip.
      • Exchange the unique Avatar node with the brand new Tooltip.

To start, we’ll discover all cases of Avatar (I’ll omit a number of the
checks, however it’s best to write comparability checks first).

defineInlineTest(
    { default: remodel, parser: "tsx" },
    {},
    `
    
    `,
    `
    
      
    
    `,
    "wrap avatar with tooltip when identify is supplied"
  );

Much like the featureToggle instance, we are able to use root.discover with
search standards to find all Avatar nodes:

root
  .discover(j.JSXElement, {
    openingElement: { identify: { identify: "Avatar" } },
  })
  .forEach((path) => {
    // now we are able to deal with every Avatar occasion
  });

Subsequent, we examine if the identify prop is current:

root
  .discover(j.JSXElement, {
    openingElement: { identify: { identify: "Avatar" } },
  })
  .forEach((path) => {
    const avatarNode = path.node;

    const nameAttr = avatarNode.openingElement.attributes.discover(
      (attr) => attr.identify.identify === "identify"
    );

    if (nameAttr) {
      const tooltipElement = createTooltipElement(
        nameAttr.worth.worth,
        avatarNode
      );
      j(path).replaceWith(tooltipElement);
    }
  });

For the createTooltipElement operate, we use the
jscodeshift API to create a brand new JSX node, with the identify
prop utilized to the Tooltip and the Avatar
part as a baby. Lastly, we name replaceWith to
change the present path.

Right here’s a preview of the way it appears to be like in
Hypermod, the place the codemod is written on
the left. The highest half on the fitting is the unique code, and the underside
half is the reworked outcome:

Determine 5: Run checks inside hypermod earlier than apply it to your codebase

This codemod searches for all cases of Avatar. If a
identify prop is discovered, it removes the identify prop
from Avatar, wraps the Avatar inside a
Tooltip, and passes the identify prop to the
Tooltip.

By now, I hope it’s clear that codemods are extremely helpful and
that the workflow is intuitive, particularly for large-scale adjustments the place
guide updates could be an enormous burden. Nonetheless, that is not the entire
image. Within the subsequent part, I’ll make clear a number of the challenges
and the way we are able to tackle these less-than-ideal points.

Fixing Widespread Pitfalls of Codemods

As a seasoned developer, you understand the “completely satisfied path” is just a small half
of the total image. There are quite a few eventualities to contemplate when writing
a change script to deal with code routinely.

Builders write code in quite a lot of kinds. For instance, somebody
would possibly import the Avatar part however give it a unique identify as a result of
they may have one other Avatar part from a unique package deal:

import { Avatar as AKAvatar } from "@design-system/avatar";

const UserInfo = () => (
  AKAvatar identify="Juntao Qiu" picture="/juntao.qiu.avatar.png" />
);

A easy textual content seek for Avatar gained’t work on this case. You’ll want
to detect the alias and apply the transformation utilizing the right
identify.

One other instance arises when coping with Tooltip imports. If the file
already imports Tooltip however makes use of an alias, the codemod should detect that
alias and apply the adjustments accordingly. You’ll be able to’t assume that the
part named Tooltip is all the time the one you’re searching for.

Within the characteristic toggle instance, somebody would possibly use
if(featureToggle('feature-new-product-list')), or assign the results of
the toggle operate to a variable earlier than utilizing it:

const shouldEnableNewFeature = featureToggle('feature-new-product-list');

if (shouldEnableNewFeature) {
  //...
}

They may even use the toggle with different circumstances or apply logical
negation, making the logic extra complicated:

const shouldEnableNewFeature = featureToggle('feature-new-product-list');

if (!shouldEnableNewFeature && someOtherLogic) {
  //...
}

These variations make it tough to foresee each edge case,
rising the danger of unintentionally breaking one thing. Relying solely
on the instances you’ll be able to anticipate just isn’t sufficient. You want thorough testing
to keep away from breaking unintended components of the code.

Leveraging Supply Graphs and Check-Pushed Codemods

To deal with these complexities, codemods ought to be used alongside different
methods. As an example, just a few years in the past, I participated in a design
system parts rewrite mission at Atlassian. We addressed this subject by
first looking out the supply graph, which contained nearly all of inside
part utilization. This allowed us to know how parts had been used,
whether or not they had been imported beneath totally different names, or whether or not sure
public props had been ceaselessly used. After this search section, we wrote our
check instances upfront, making certain we coated nearly all of use instances, and
then developed the codemod.

In conditions the place we could not confidently automate the improve, we
inserted feedback or “TODOs” on the name websites. This allowed the
builders working the script to deal with particular instances manually. Often,
there have been solely a handful of such cases, so this strategy nonetheless proved
useful for upgrading variations.

Using Present Code Standardization Instruments

As you’ll be able to see, there are many edge instances to deal with, particularly in
codebases past your management—comparable to exterior dependencies. This
complexity signifies that utilizing codemods requires cautious supervision and a
evaluation of the outcomes.

Nonetheless, in case your codebase has standardization instruments in place, comparable to a
linter that enforces a selected coding type, you’ll be able to leverage these
instruments to cut back edge instances. By implementing a constant construction, instruments
like linters assist slender down the variations in code, making the
transformation simpler and minimizing surprising points.

As an example, you might use linting guidelines to limit sure patterns,
comparable to avoiding nested conditional (ternary) operators or implementing named
exports over default exports. These guidelines assist streamline the codebase,
making codemods extra predictable and efficient.

Moreover, breaking down complicated transformations into smaller, extra
manageable ones lets you deal with particular person points extra exactly. As
we’ll quickly see, composing smaller codemods could make dealing with complicated
adjustments extra possible.

Codemod Composition

Let’s revisit the characteristic toggle elimination instance mentioned earlier. Within the code snippet
we have now a toggle known as feature-convert-new must be eliminated:

import { featureToggle } from "./utils/featureToggle";

const convertOld = (enter: string) => {
  return enter.toLowerCase();
};

const convertNew = (enter: string) => {
  return enter.toUpperCase();
};

const outcome = featureToggle("feature-convert-new")
  ? convertNew("Good day, world")
  : convertOld("Good day, world");

console.log(outcome);

The codemod for take away a given toggle works high-quality, and after working the codemod,
we would like the supply to appear like this:

const convertNew = (enter: string) => {
  return enter.toUpperCase();
};

const outcome = convertNew("Good day, world");

console.log(outcome);

Nonetheless, past eradicating the characteristic toggle logic, there are further duties to
deal with:

  • Take away the unused convertOld operate.
  • Clear up the unused featureToggle import.

After all, you might write one huge codemod to deal with all the pieces in a
single go and check it collectively. Nonetheless, a extra maintainable strategy is
to deal with codemod logic like product code: break the duty into smaller,
impartial items—identical to how you’d usually refactor manufacturing
code.

Breaking It Down

We will break the massive transformation down into smaller codemods and
compose them. The benefit of this strategy is that every transformation
could be examined individually, masking totally different instances with out interference.
Furthermore, it lets you reuse and compose them for various
functions.

As an example, you would possibly break it down like this:

  • A metamorphosis to take away a particular characteristic toggle.
  • One other transformation to scrub up unused imports.
  • A metamorphosis to take away unused operate declarations.

By composing these, you’ll be able to create a pipeline of transformations:

import { removeFeatureToggle } from "./remove-feature-toggle";
import { removeUnusedImport } from "./remove-unused-import";
import { removeUnusedFunction } from "./remove-unused-function";

import { createTransformer } from "./utils";

const removeFeatureConvertNew = removeFeatureToggle("feature-convert-new");

const remodel = createTransformer([
  removeFeatureConvertNew,
  removeUnusedImport,
  removeUnusedFunction,
]);

export default remodel;

On this pipeline, the transformations work as follows:

  1. Take away the feature-convert-new toggle.
  2. Clear up the unused import assertion.
  3. Take away the convertOld operate because it’s not used.

Determine 6: Compose transforms into a brand new remodel

You too can extract further codemods as wanted, combining them in
numerous orders relying on the specified final result.

Determine 7: Put totally different transforms right into a pipepline to kind one other remodel

The createTransformer Perform

The implementation of the createTransformer operate is comparatively
simple. It acts as a higher-order operate that takes an inventory of
smaller remodel features, iterates via the listing to use them to
the foundation AST, and at last converts the modified AST again into supply
code.

import { API, Assortment, FileInfo, JSCodeshift, Choices } from "jscodeshift";

kind TransformFunction = { (j: JSCodeshift, root: Assortment): void };

const createTransformer =
  (transforms: TransformFunction[]) =>
  (fileInfo: FileInfo, api: API, choices: Choices) => {
    const j = api.jscodeshift;
    const root = j(fileInfo.supply);

    transforms.forEach((remodel) => remodel(j, root));
    return root.toSource(choices.printOptions || { quote: "single" });
  };

export { createTransformer };

For instance, you might have a remodel operate that inlines
expressions assigning the characteristic toggle name to a variable, so in later
transforms you don’t have to fret about these instances anymore:

const shouldEnableNewFeature = featureToggle('feature-convert-new');

if (!shouldEnableNewFeature && someOtherLogic) {
  //...
}

Turns into this:

if (!featureToggle('feature-convert-new') && someOtherLogic) {
  //...
}

Over time, you would possibly construct up a set of reusable, smaller
transforms, which might significantly ease the method of dealing with tough edge
instances. This strategy proved extremely efficient in our work refining design
system parts. As soon as we transformed one package deal—such because the button
part—we had just a few reusable transforms outlined, like including feedback
initially of features, eradicating deprecated props, or creating aliases
when a package deal is already imported above.

Every of those smaller transforms could be examined and used independently
or mixed for extra complicated transformations, which hurries up subsequent
conversions considerably. Consequently, our refinement work turned extra
environment friendly, and these generic codemods at the moment are relevant to different inside
and even exterior React codebases.

Since every remodel is comparatively standalone, you’ll be able to fine-tune them
with out affecting different transforms or the extra complicated, composed ones. For
occasion, you would possibly re-implement a remodel to enhance efficiency—like
decreasing the variety of node-finding rounds—and with complete check
protection, you are able to do this confidently and safely.

Codemods in Different Languages

Whereas the examples we’ve explored to date give attention to JavaScript and JSX
utilizing jscodeshift, codemods will also be utilized to different languages. For
occasion, JavaParser provides an identical
mechanism in Java, utilizing AST manipulation to refactor Java code.

Utilizing JavaParser in a Java Codebase

JavaParser could be helpful for making breaking API adjustments or refactoring
giant Java codebases in a structured, automated method.

Assume we have now the next code in FeatureToggleExample.java, which
checks the toggle feature-convert-new and branches accordingly:

public class FeatureToggleExample {
    public void execute() {
        if (FeatureToggle.isEnabled("feature-convert-new")) {
          newFeature();
        } else {
          oldFeature();
        }
    }

    void newFeature() {
        System.out.println("New Characteristic Enabled");
    }

    void oldFeature() {
        System.out.println("Previous Characteristic");
    }
}

We will outline a customer to search out if statements checking for
FeatureToggle.isEnabled, after which change them with the corresponding
true department—just like how we dealt with the characteristic toggle codemod in
JavaScript.

// Customer to take away characteristic toggles
class FeatureToggleVisitor extends VoidVisitorAdapter {
    @Override
    public void go to(IfStmt ifStmt, Void arg) {
        tremendous.go to(ifStmt, arg);
        if (ifStmt.getCondition().isMethodCallExpr()) {
            MethodCallExpr methodCall = ifStmt.getCondition().asMethodCallExpr();
            if (methodCall.getNameAsString().equals("isEnabled") &&
                methodCall.getScope().isPresent() &&
                methodCall.getScope().get().toString().equals("FeatureToggle")) {

                BlockStmt thenBlock = ifStmt.getThenStmt().asBlockStmt();
                ifStmt.change(thenBlock);
            }
        }
    }
}

This code defines a customer sample utilizing
JavaParser to traverse and manipulate the AST. The
FeatureToggleVisitor appears to be like for if statements
that decision FeatureToggle.isEnabled() and replaces the complete
if assertion with the true department.

You too can outline guests to search out unused strategies and take away
them:

class UnusedMethodRemover extends VoidVisitorAdapter {
    non-public Set calledMethods = new HashSet();
    non-public Record methodsToRemove = new ArrayList();

    // Accumulate all known as strategies
    @Override
    public void go to(MethodCallExpr n, Void arg) {
        tremendous.go to(n, arg);
        calledMethods.add(n.getNameAsString());
    }

    // Accumulate strategies to take away if not known as
    @Override
    public void go to(MethodDeclaration n, Void arg) {
        tremendous.go to(n, arg);
        String methodName = n.getNameAsString();
        if (!calledMethods.incorporates(methodName) && !methodName.equals("principal")) {
            methodsToRemove.add(n);
        }
    }

    // After visiting, take away the unused strategies
    public void removeUnusedMethods() {
        for (MethodDeclaration technique : methodsToRemove) {
            technique.take away();
        }
    }
}

This code defines a customer, UnusedMethodRemover, to detect and
take away unused strategies. It tracks all known as strategies within the calledMethods
set and checks every technique declaration. If a way isn’t known as and isn’t
principal, it provides it to the listing of strategies to take away. As soon as all strategies are
processed, it removes any unused strategies from the AST.

Composing Java Guests

You’ll be able to chain these guests collectively and apply them to your codebase
like so:

public class FeatureToggleRemoverWithCleanup {
    public static void principal(String[] args) {
        attempt {
            String filePath = "src/check/java/com/instance/Instance.java";
            CompilationUnit cu = StaticJavaParser.parse(new FileInputStream(filePath));

            // Apply transformations
            FeatureToggleVisitor toggleVisitor = new FeatureToggleVisitor();
            cu.settle for(toggleVisitor, null);

            UnusedMethodRemover remover = new UnusedMethodRemover();
            cu.settle for(remover, null);
            remover.removeUnusedMethods();

            // Write the modified code again to the file
            attempt (FileOutputStream fos = new FileOutputStream(filePath)) {
                fos.write(cu.toString().getBytes());
            }

            System.out.println("Code transformation accomplished efficiently.");
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

Every customer is a unit of transformation, and the customer sample in
JavaParser makes it simple to compose them.

OpenRewrite

One other common choice for Java tasks is OpenRewrite. It makes use of a unique format of the
supply code tree known as Lossless Semantic Bushes (LSTs), which
present extra detailed info in comparison with conventional AST (Summary
Syntax Tree) approaches utilized by instruments like JavaParser or jscodeshift.
Whereas AST focuses on the syntactic construction, LSTs seize each syntax and
semantic which means, enabling extra correct and complicated
transformations.

OpenRewrite additionally has a strong ecosystem of open-source refactoring
recipes for duties comparable to framework migrations, safety fixes, and
sustaining stylistic consistency. This built-in library of recipes can
save builders vital time by permitting them to use standardized
transformations throughout giant codebases while not having to write down customized
scripts.

For builders who want custom-made transformations, OpenRewrite permits
you to create and distribute your personal recipes, making it a extremely versatile
and extensible instrument. It’s extensively used within the Java neighborhood and is
steadily increasing into different languages, because of its superior
capabilities and community-driven strategy.

Variations Between OpenRewrite and JavaParser or jscodeshift

The important thing distinction between OpenRewrite and instruments like JavaParser or
jscodeshift lies of their strategy to code transformation:

  • OpenRewrite’s Lossless Semantic Bushes (LSTs) seize each the
    syntactic and semantic which means of the code, enabling extra correct
    transformations.
  • JavaParser and jscodeshift depend on conventional ASTs, which focus
    totally on the syntactic construction. Whereas highly effective, they could not all the time
    seize the nuances of how the code behaves semantically.

Moreover, OpenRewrite provides a big library of community-driven
refactoring recipes, making it simpler to use widespread transformations with out
needing to write down customized codemods from scratch.

Different Instruments for Codemods

Whereas jscodeshift and OpenRewrite are highly effective instruments, there are
different choices value contemplating, relying in your wants and the ecosystem
you are working in.

Hypermod

Hypermod introduces AI help to the codemod writing course of.
As a substitute of manually crafting the codemod logic, builders can describe
the specified transformation in plain English, and Hypermod will generate
the codemod utilizing jscodeshift. This makes codemod creation extra
accessible, even for builders who is probably not accustomed to AST
manipulation.

You’ll be able to compose, check, and deploy a codemod to any repository
related to Hypermod. It might probably run the codemod and generate a pull
request with the proposed adjustments, permitting you to evaluation and approve
them. This integration makes the complete course of from codemod growth
to deployment far more streamlined.

Codemod.com

Codemod.com is a community-driven platform the place builders
can share and uncover codemods. When you want a particular codemod for a
widespread refactoring process or migration, you’ll be able to seek for current
codemods. Alternatively, you’ll be able to publish codemods you’ve created to assist
others within the developer neighborhood.

When you’re migrating an API and want a codemod to deal with it,
Codemod.com can prevent time by providing pre-built codemods for
many widespread transformations, decreasing the necessity to write one from
scratch.

Conclusion

Codemods are highly effective instruments that enable builders to automate code
transformations, making it simpler to handle API adjustments, refactor legacy
code, and keep consistency throughout giant codebases with minimal guide
intervention. By utilizing instruments like jscodeshift, Hypermod, or
OpenRewrite, builders can streamline all the pieces from minor syntax
adjustments to main part rewrites, bettering total code high quality and
maintainability.

Nonetheless, whereas codemods supply vital advantages, they aren’t
with out challenges. One of many key issues is dealing with edge instances,
notably when the codebase is numerous or publicly shared. Variations
in coding kinds, import aliases, or surprising patterns can result in
points that codemods might not deal with routinely. These edge instances
require cautious planning, thorough testing, and, in some cases, guide
intervention to make sure accuracy.

To maximise the effectiveness of codemods, it’s essential to interrupt
complicated transformations into smaller, testable steps and to make use of code
standardization instruments the place attainable. Codemods could be extremely efficient,
however their success depends upon considerate design and understanding the
limitations they could face in additional diversified or complicated codebases.


Buy JNews
ADVERTISEMENT


As a library developer, chances are you’ll create a preferred utility that a whole lot of
1000’s of builders depend on every day, comparable to lodash or React. Over time,
utilization patterns would possibly emerge that transcend your preliminary design. When this
occurs, chances are you’ll want to increase an API by including parameters or modifying
operate signatures to repair edge instances. The problem lies in rolling out
these breaking adjustments with out disrupting your customers’ workflows.

That is the place codemods are available in—a strong instrument for automating
large-scale code transformations, permitting builders to introduce breaking
API adjustments, refactor legacy codebases, and keep code hygiene with
minimal guide effort.

On this article, we’ll discover what codemods are and the instruments you’ll be able to
use to create them, comparable to jscodeshift, hypermod.io, and codemod.com. We’ll stroll via real-world examples,
from cleansing up characteristic toggles to refactoring part hierarchies.
You’ll additionally discover ways to break down complicated transformations into smaller,
testable items—a follow referred to as codemod composition—to make sure
flexibility and maintainability.

By the tip, you’ll see how codemods can turn out to be an important a part of your
toolkit for managing large-scale codebases, serving to you retain your code clear
and maintainable whereas dealing with even essentially the most difficult refactoring
duties.

Breaking Adjustments in APIs

Returning to the state of affairs of the library developer, after the preliminary
launch, new utilization patterns emerge, prompting the necessity to prolong an
API—maybe by including a parameter or modifying a operate signature to
make it simpler to make use of.

For easy adjustments, a primary find-and-replace within the IDE would possibly work. In
extra complicated instances, you would possibly resort to utilizing instruments like sed
or awk. Nonetheless, when your library is extensively adopted, the
scope of such adjustments turns into more durable to handle. You’ll be able to’t make certain how
extensively the modification will influence your customers, and the very last thing
you need is to interrupt current performance that doesn’t want
updating.

A typical strategy is to announce the breaking change, launch a brand new
model, and ask customers emigrate at their very own tempo. However this workflow,
whereas acquainted, usually would not scale nicely, particularly for main shifts.
Contemplate React’s transition from class parts to operate parts
with hooks—a paradigm shift that took years for big codebases to completely
undertake. By the point groups managed emigrate, extra breaking adjustments had been
usually already on the horizon.

For library builders, this example creates a burden. Sustaining
a number of older variations to assist customers who haven’t migrated is each
pricey and time-consuming. For customers, frequent adjustments threat eroding belief.
They might hesitate to improve or begin exploring extra steady options,
which perpetuating the cycle.

However what in the event you may assist customers handle these adjustments routinely?
What in the event you may launch a instrument alongside your replace that refactors
their code for them—renaming features, updating parameter order, and
eradicating unused code with out requiring guide intervention?

That’s the place codemods are available in. A number of libraries, together with React
and Subsequent.js, have already embraced codemods to easy the trail for model
bumps. For instance, React offers codemods to deal with the migration from
older API patterns, just like the previous Context API, to newer ones.

So, what precisely is the codemod we’re speaking about right here?

What’s a Codemod?

A codemod (code modification) is an automatic script used to remodel
code to observe new APIs, syntax, or coding requirements. Codemods use
Summary Syntax Tree (AST) manipulation to use constant, large-scale
adjustments throughout codebases. Initially developed at Fb, codemods helped
engineers handle refactoring duties for big tasks like React. As
Fb scaled, sustaining the codebase and updating APIs turned
more and more tough, prompting the event of codemods.

Manually updating 1000’s of recordsdata throughout totally different repositories was
inefficient and error-prone, so the idea of codemods—automated scripts
that remodel code—was launched to deal with this downside.

The method sometimes entails three principal steps:

  1. Parsing the code into an AST, the place every a part of the code is
    represented as a tree construction.
  2. Modifying the tree by making use of a change, comparable to renaming a
    operate or altering parameters.
  3. Rewriting the modified tree again into the supply code.

By utilizing this strategy, codemods be certain that adjustments are utilized
constantly throughout each file in a codebase, decreasing the prospect of human
error. Codemods may deal with complicated refactoring eventualities, comparable to
adjustments to deeply nested constructions or eradicating deprecated API utilization.

If we visualize the method, it could look one thing like this:

Determine 1: The three steps of a typical codemod course of

The concept of a program that may “perceive” your code after which carry out
automated transformations isn’t new. That’s how your IDE works once you
run refactorings like Extract Perform, Rename Variable, or Inline Perform.
Basically, your IDE parses the supply code into ASTs and applies
predefined transformations to the tree, saving the outcome again into your
recordsdata.

For contemporary IDEs, many issues occur beneath the hood to make sure adjustments
are utilized appropriately and effectively, comparable to figuring out the scope of
the change and resolving conflicts like variable identify collisions. Some
refactorings even immediate you to enter parameters, comparable to when utilizing
Change Perform Declaration, the place you’ll be able to modify the
order of parameters or default values earlier than finalizing the change.

Use jscodeshift in JavaScript Codebases

Let’s have a look at a concrete instance to know how we may run a
codemod in a JavaScript mission. The JavaScript neighborhood has a number of
instruments that make this work possible, together with parsers that convert supply
code into an AST, in addition to transpilers that may remodel the tree into
different codecs (that is how TypeScript works). Moreover, there are
instruments that assist apply codemods to complete repositories routinely.

One of the common instruments for writing codemods is jscodeshift, a toolkit maintained by Fb.
It simplifies the creation of codemods by offering a strong API to
manipulate ASTs. With jscodeshift, builders can seek for particular
patterns within the code and apply transformations at scale.

You should utilize jscodeshift to determine and change deprecated API calls
with up to date variations throughout a complete mission.

Let’s break down a typical workflow for composing a codemod
manually.

Clear a Stale Characteristic Toggle

Let’s begin with a easy but sensible instance to show the
energy of codemods. Think about you’re utilizing a characteristic
toggle
in your
codebase to regulate the discharge of unfinished or experimental options.
As soon as the characteristic is reside in manufacturing and dealing as anticipated, the following
logical step is to scrub up the toggle and any associated logic.

As an example, take into account the next code:

const information = featureToggle('feature-new-product-list') ? { identify: 'Product' } : undefined;

As soon as the characteristic is absolutely launched and not wants a toggle, this
could be simplified to:

const information = { identify: 'Product' };

The duty entails discovering all cases of featureToggle within the
codebase, checking whether or not the toggle refers to
feature-new-product-list, and eradicating the conditional logic surrounding
it. On the identical time, different characteristic toggles (like
feature-search-result-refinement, which can nonetheless be in growth)
ought to stay untouched. The codemod must perceive the construction
of the code to use adjustments selectively.

Understanding the AST

Earlier than we dive into writing the codemod, let’s break down how this
particular code snippet appears to be like in an AST. You should utilize instruments like AST
Explorer
to visualise how supply code and AST
are mapped. It’s useful to know the node varieties you are interacting
with earlier than making use of any adjustments.

The picture under reveals the syntax tree by way of ECMAScript syntax. It
incorporates nodes like Identifier (for variables), StringLiteral (for the
toggle identify), and extra summary nodes like CallExpression and
ConditionalExpression.

Determine 2: The Summary Syntax Tree illustration of the characteristic toggle examine

On this AST illustration, the variable information is assigned utilizing a
ConditionalExpression. The check a part of the expression calls
featureToggle('feature-new-product-list'). If the check returns true,
the consequent department assigns { identify: 'Product' } to information. If
false, the alternate department assigns undefined.

For a process with clear enter and output, I desire writing checks first,
then implementing the codemod. I begin by defining a destructive case to
guarantee we don’t unintentionally change issues we wish to depart untouched,
adopted by an actual case that performs the precise conversion. I start with
a easy state of affairs, implement it, then add a variation (like checking if
featureToggle is known as inside an if assertion), implement that case, and
guarantee all checks go.

This strategy aligns nicely with Check-Pushed Growth (TDD), even
in the event you don’t follow TDD usually. Realizing precisely what the
transformation’s inputs and outputs are earlier than coding improves security and
effectivity, particularly when tweaking codemods.

With jscodeshift, you’ll be able to write checks to confirm how the codemod
behaves:

const remodel = require("../remove-feature-new-product-list");

defineInlineTest(
  remodel,
  {},
  `
  const information = featureToggle('feature-new-product-list') ? { identify: 'Product' } : undefined;
  `,
  `
  const information = { identify: 'Product' };
  `,
  "delete the toggle feature-new-product-list in conditional operator"
);

The defineInlineTest operate from jscodeshift lets you outline
the enter, anticipated output, and a string describing the check’s intent.
Now, working the check with a traditional jest command will fail as a result of the
codemod isn’t written but.

The corresponding destructive case would make sure the code stays unchanged
for different characteristic toggles:

defineInlineTest(
  remodel,
  {},
  `
  const information = featureToggle('feature-search-result-refinement') ? { identify: 'Product' } : undefined;
  `,
  `
  const information = featureToggle('feature-search-result-refinement') ? { identify: 'Product' } : undefined;
  `,
  "don't change different characteristic toggles"
);

Writing the Codemod

Let’s begin by defining a easy remodel operate. Create a file
known as remodel.js with the next code construction:

module.exports = operate(fileInfo, api, choices) {
  const j = api.jscodeshift;
  const root = j(fileInfo.supply);

  // manipulate the tree nodes right here

  return root.toSource();
};

This operate reads the file right into a tree and makes use of jscodeshift’s API to
question, modify, and replace the nodes. Lastly, it converts the AST again to
supply code with .toSource().

Now we are able to begin implementing the remodel steps:

  1. Discover all cases of featureToggle.
  2. Confirm that the argument handed is 'feature-new-product-list'.
  3. Exchange the complete conditional expression with the consequent half,
    successfully eradicating the toggle.

Right here’s how we obtain this utilizing jscodeshift:

module.exports = operate (fileInfo, api, choices) {
  const j = api.jscodeshift;
  const root = j(fileInfo.supply);

  // Discover ConditionalExpression the place the check is featureToggle('feature-new-product-list')
  root
    .discover(j.ConditionalExpression, {
      check: {
        callee: { identify: "featureToggle" },
        arguments: [{ value: "feature-new-product-list" }],
      },
    })
    .forEach((path) => {
      // Exchange the ConditionalExpression with the 'consequent'
      j(path).replaceWith(path.node.consequent);
    });

  return root.toSource();
};

The codemod above:

  • Finds ConditionalExpression nodes the place the check calls
    featureToggle('feature-new-product-list').
  • Replaces the complete conditional expression with the ensuing (i.e., {
    identify: 'Product' }
    ), eradicating the toggle logic and leaving simplified code
    behind.

This instance demonstrates how simple it’s to create a helpful
transformation and apply it to a big codebase, considerably decreasing
guide effort.

You’ll want to write down extra check instances to deal with variations like
if-else statements, logical expressions (e.g.,
!featureToggle('feature-new-product-list')), and so forth to make the
codemod strong in real-world eventualities.

As soon as the codemod is prepared, you’ll be able to try it out on a goal codebase,
such because the one you are engaged on. jscodeshift offers a command-line
instrument that you should utilize to use the codemod and report the outcomes.

$ jscodeshift -t transform-name src/

After validating the outcomes, examine that each one useful checks nonetheless
go and that nothing breaks—even in the event you’re introducing a breaking change.
As soon as happy, you’ll be able to commit the adjustments and lift a pull request as
a part of your regular workflow.

Codemods Enhance Code High quality and Maintainability

Codemods aren’t simply helpful for managing breaking API adjustments—they will
considerably enhance code high quality and maintainability. As codebases
evolve, they usually accumulate technical debt, together with outdated characteristic
toggles, deprecated strategies, or tightly coupled parts. Manually
refactoring these areas could be time-consuming and error-prone.

By automating refactoring duties, codemods assist maintain your codebase clear
and freed from legacy patterns. Usually making use of codemods lets you
implement new coding requirements, take away unused code, and modernize your
codebase with out having to manually modify each file.

Refactoring an Avatar Part

Now, let’s have a look at a extra complicated instance. Suppose you’re working with
a design system that features an Avatar part tightly coupled with a
Tooltip. Each time a person passes a identify prop into the Avatar, it
routinely wraps the avatar with a tooltip.

Determine 3: A avatar part with a tooltip

Right here’s the present Avatar implementation:

import { Tooltip } from "@design-system/tooltip";

const Avatar = ({ identify, picture }: AvatarProps) => {
  if (identify) {
    return (
      
        
      
    );
  }

  return ;
};

The objective is to decouple the Tooltip from the Avatar part,
giving builders extra flexibility. Builders ought to have the ability to determine
whether or not to wrap the Avatar in a Tooltip. Within the refactored model,
Avatar will merely render the picture, and customers can apply a Tooltip
manually if wanted.

Right here’s the refactored model of Avatar:

const Avatar = ({ picture }: AvatarProps) => {
  return ;
};

Now, customers can manually wrap the Avatar with a Tooltip as
wanted:

import { Tooltip } from "@design-system/tooltip";
import { Avatar } from "@design-system/avatar";

const UserProfile = () => {
  return (
    
      
    
  );
};

The problem arises when there are a whole lot of Avatar usages unfold
throughout the codebase. Manually refactoring every occasion could be extremely
inefficient, so we are able to use a codemod to automate this course of.

Utilizing instruments like AST Explorer, we are able to
examine the part and see which nodes characterize the Avatar utilization
we’re concentrating on. An Avatar part with each identify and picture props
is parsed into an summary syntax tree as proven under:

Determine 4: AST of the Avatar part utilization

Writing the Codemod

Let’s break down the transformation into smaller duties:

  • Discover Avatar utilization within the part tree.
  • Verify if the identify prop is current.
    • If not, do nothing.
    • If current:
      • Create a Tooltip node.
      • Add the identify to the Tooltip.
      • Take away the identify from Avatar.
      • Add Avatar as a baby of the Tooltip.
      • Exchange the unique Avatar node with the brand new Tooltip.

To start, we’ll discover all cases of Avatar (I’ll omit a number of the
checks, however it’s best to write comparability checks first).

defineInlineTest(
    { default: remodel, parser: "tsx" },
    {},
    `
    
    `,
    `
    
      
    
    `,
    "wrap avatar with tooltip when identify is supplied"
  );

Much like the featureToggle instance, we are able to use root.discover with
search standards to find all Avatar nodes:

root
  .discover(j.JSXElement, {
    openingElement: { identify: { identify: "Avatar" } },
  })
  .forEach((path) => {
    // now we are able to deal with every Avatar occasion
  });

Subsequent, we examine if the identify prop is current:

root
  .discover(j.JSXElement, {
    openingElement: { identify: { identify: "Avatar" } },
  })
  .forEach((path) => {
    const avatarNode = path.node;

    const nameAttr = avatarNode.openingElement.attributes.discover(
      (attr) => attr.identify.identify === "identify"
    );

    if (nameAttr) {
      const tooltipElement = createTooltipElement(
        nameAttr.worth.worth,
        avatarNode
      );
      j(path).replaceWith(tooltipElement);
    }
  });

For the createTooltipElement operate, we use the
jscodeshift API to create a brand new JSX node, with the identify
prop utilized to the Tooltip and the Avatar
part as a baby. Lastly, we name replaceWith to
change the present path.

Right here’s a preview of the way it appears to be like in
Hypermod, the place the codemod is written on
the left. The highest half on the fitting is the unique code, and the underside
half is the reworked outcome:

Determine 5: Run checks inside hypermod earlier than apply it to your codebase

This codemod searches for all cases of Avatar. If a
identify prop is discovered, it removes the identify prop
from Avatar, wraps the Avatar inside a
Tooltip, and passes the identify prop to the
Tooltip.

By now, I hope it’s clear that codemods are extremely helpful and
that the workflow is intuitive, particularly for large-scale adjustments the place
guide updates could be an enormous burden. Nonetheless, that is not the entire
image. Within the subsequent part, I’ll make clear a number of the challenges
and the way we are able to tackle these less-than-ideal points.

Fixing Widespread Pitfalls of Codemods

As a seasoned developer, you understand the “completely satisfied path” is just a small half
of the total image. There are quite a few eventualities to contemplate when writing
a change script to deal with code routinely.

Builders write code in quite a lot of kinds. For instance, somebody
would possibly import the Avatar part however give it a unique identify as a result of
they may have one other Avatar part from a unique package deal:

import { Avatar as AKAvatar } from "@design-system/avatar";

const UserInfo = () => (
  AKAvatar identify="Juntao Qiu" picture="/juntao.qiu.avatar.png" />
);

A easy textual content seek for Avatar gained’t work on this case. You’ll want
to detect the alias and apply the transformation utilizing the right
identify.

One other instance arises when coping with Tooltip imports. If the file
already imports Tooltip however makes use of an alias, the codemod should detect that
alias and apply the adjustments accordingly. You’ll be able to’t assume that the
part named Tooltip is all the time the one you’re searching for.

Within the characteristic toggle instance, somebody would possibly use
if(featureToggle('feature-new-product-list')), or assign the results of
the toggle operate to a variable earlier than utilizing it:

const shouldEnableNewFeature = featureToggle('feature-new-product-list');

if (shouldEnableNewFeature) {
  //...
}

They may even use the toggle with different circumstances or apply logical
negation, making the logic extra complicated:

const shouldEnableNewFeature = featureToggle('feature-new-product-list');

if (!shouldEnableNewFeature && someOtherLogic) {
  //...
}

These variations make it tough to foresee each edge case,
rising the danger of unintentionally breaking one thing. Relying solely
on the instances you’ll be able to anticipate just isn’t sufficient. You want thorough testing
to keep away from breaking unintended components of the code.

Leveraging Supply Graphs and Check-Pushed Codemods

To deal with these complexities, codemods ought to be used alongside different
methods. As an example, just a few years in the past, I participated in a design
system parts rewrite mission at Atlassian. We addressed this subject by
first looking out the supply graph, which contained nearly all of inside
part utilization. This allowed us to know how parts had been used,
whether or not they had been imported beneath totally different names, or whether or not sure
public props had been ceaselessly used. After this search section, we wrote our
check instances upfront, making certain we coated nearly all of use instances, and
then developed the codemod.

In conditions the place we could not confidently automate the improve, we
inserted feedback or “TODOs” on the name websites. This allowed the
builders working the script to deal with particular instances manually. Often,
there have been solely a handful of such cases, so this strategy nonetheless proved
useful for upgrading variations.

Using Present Code Standardization Instruments

As you’ll be able to see, there are many edge instances to deal with, particularly in
codebases past your management—comparable to exterior dependencies. This
complexity signifies that utilizing codemods requires cautious supervision and a
evaluation of the outcomes.

Nonetheless, in case your codebase has standardization instruments in place, comparable to a
linter that enforces a selected coding type, you’ll be able to leverage these
instruments to cut back edge instances. By implementing a constant construction, instruments
like linters assist slender down the variations in code, making the
transformation simpler and minimizing surprising points.

As an example, you might use linting guidelines to limit sure patterns,
comparable to avoiding nested conditional (ternary) operators or implementing named
exports over default exports. These guidelines assist streamline the codebase,
making codemods extra predictable and efficient.

Moreover, breaking down complicated transformations into smaller, extra
manageable ones lets you deal with particular person points extra exactly. As
we’ll quickly see, composing smaller codemods could make dealing with complicated
adjustments extra possible.

Codemod Composition

Let’s revisit the characteristic toggle elimination instance mentioned earlier. Within the code snippet
we have now a toggle known as feature-convert-new must be eliminated:

import { featureToggle } from "./utils/featureToggle";

const convertOld = (enter: string) => {
  return enter.toLowerCase();
};

const convertNew = (enter: string) => {
  return enter.toUpperCase();
};

const outcome = featureToggle("feature-convert-new")
  ? convertNew("Good day, world")
  : convertOld("Good day, world");

console.log(outcome);

The codemod for take away a given toggle works high-quality, and after working the codemod,
we would like the supply to appear like this:

const convertNew = (enter: string) => {
  return enter.toUpperCase();
};

const outcome = convertNew("Good day, world");

console.log(outcome);

Nonetheless, past eradicating the characteristic toggle logic, there are further duties to
deal with:

  • Take away the unused convertOld operate.
  • Clear up the unused featureToggle import.

After all, you might write one huge codemod to deal with all the pieces in a
single go and check it collectively. Nonetheless, a extra maintainable strategy is
to deal with codemod logic like product code: break the duty into smaller,
impartial items—identical to how you’d usually refactor manufacturing
code.

Breaking It Down

We will break the massive transformation down into smaller codemods and
compose them. The benefit of this strategy is that every transformation
could be examined individually, masking totally different instances with out interference.
Furthermore, it lets you reuse and compose them for various
functions.

As an example, you would possibly break it down like this:

  • A metamorphosis to take away a particular characteristic toggle.
  • One other transformation to scrub up unused imports.
  • A metamorphosis to take away unused operate declarations.

By composing these, you’ll be able to create a pipeline of transformations:

import { removeFeatureToggle } from "./remove-feature-toggle";
import { removeUnusedImport } from "./remove-unused-import";
import { removeUnusedFunction } from "./remove-unused-function";

import { createTransformer } from "./utils";

const removeFeatureConvertNew = removeFeatureToggle("feature-convert-new");

const remodel = createTransformer([
  removeFeatureConvertNew,
  removeUnusedImport,
  removeUnusedFunction,
]);

export default remodel;

On this pipeline, the transformations work as follows:

  1. Take away the feature-convert-new toggle.
  2. Clear up the unused import assertion.
  3. Take away the convertOld operate because it’s not used.

Determine 6: Compose transforms into a brand new remodel

You too can extract further codemods as wanted, combining them in
numerous orders relying on the specified final result.

Determine 7: Put totally different transforms right into a pipepline to kind one other remodel

The createTransformer Perform

The implementation of the createTransformer operate is comparatively
simple. It acts as a higher-order operate that takes an inventory of
smaller remodel features, iterates via the listing to use them to
the foundation AST, and at last converts the modified AST again into supply
code.

import { API, Assortment, FileInfo, JSCodeshift, Choices } from "jscodeshift";

kind TransformFunction = { (j: JSCodeshift, root: Assortment): void };

const createTransformer =
  (transforms: TransformFunction[]) =>
  (fileInfo: FileInfo, api: API, choices: Choices) => {
    const j = api.jscodeshift;
    const root = j(fileInfo.supply);

    transforms.forEach((remodel) => remodel(j, root));
    return root.toSource(choices.printOptions || { quote: "single" });
  };

export { createTransformer };

For instance, you might have a remodel operate that inlines
expressions assigning the characteristic toggle name to a variable, so in later
transforms you don’t have to fret about these instances anymore:

const shouldEnableNewFeature = featureToggle('feature-convert-new');

if (!shouldEnableNewFeature && someOtherLogic) {
  //...
}

Turns into this:

if (!featureToggle('feature-convert-new') && someOtherLogic) {
  //...
}

Over time, you would possibly construct up a set of reusable, smaller
transforms, which might significantly ease the method of dealing with tough edge
instances. This strategy proved extremely efficient in our work refining design
system parts. As soon as we transformed one package deal—such because the button
part—we had just a few reusable transforms outlined, like including feedback
initially of features, eradicating deprecated props, or creating aliases
when a package deal is already imported above.

Every of those smaller transforms could be examined and used independently
or mixed for extra complicated transformations, which hurries up subsequent
conversions considerably. Consequently, our refinement work turned extra
environment friendly, and these generic codemods at the moment are relevant to different inside
and even exterior React codebases.

Since every remodel is comparatively standalone, you’ll be able to fine-tune them
with out affecting different transforms or the extra complicated, composed ones. For
occasion, you would possibly re-implement a remodel to enhance efficiency—like
decreasing the variety of node-finding rounds—and with complete check
protection, you are able to do this confidently and safely.

Codemods in Different Languages

Whereas the examples we’ve explored to date give attention to JavaScript and JSX
utilizing jscodeshift, codemods will also be utilized to different languages. For
occasion, JavaParser provides an identical
mechanism in Java, utilizing AST manipulation to refactor Java code.

Utilizing JavaParser in a Java Codebase

JavaParser could be helpful for making breaking API adjustments or refactoring
giant Java codebases in a structured, automated method.

Assume we have now the next code in FeatureToggleExample.java, which
checks the toggle feature-convert-new and branches accordingly:

public class FeatureToggleExample {
    public void execute() {
        if (FeatureToggle.isEnabled("feature-convert-new")) {
          newFeature();
        } else {
          oldFeature();
        }
    }

    void newFeature() {
        System.out.println("New Characteristic Enabled");
    }

    void oldFeature() {
        System.out.println("Previous Characteristic");
    }
}

We will outline a customer to search out if statements checking for
FeatureToggle.isEnabled, after which change them with the corresponding
true department—just like how we dealt with the characteristic toggle codemod in
JavaScript.

// Customer to take away characteristic toggles
class FeatureToggleVisitor extends VoidVisitorAdapter {
    @Override
    public void go to(IfStmt ifStmt, Void arg) {
        tremendous.go to(ifStmt, arg);
        if (ifStmt.getCondition().isMethodCallExpr()) {
            MethodCallExpr methodCall = ifStmt.getCondition().asMethodCallExpr();
            if (methodCall.getNameAsString().equals("isEnabled") &&
                methodCall.getScope().isPresent() &&
                methodCall.getScope().get().toString().equals("FeatureToggle")) {

                BlockStmt thenBlock = ifStmt.getThenStmt().asBlockStmt();
                ifStmt.change(thenBlock);
            }
        }
    }
}

This code defines a customer sample utilizing
JavaParser to traverse and manipulate the AST. The
FeatureToggleVisitor appears to be like for if statements
that decision FeatureToggle.isEnabled() and replaces the complete
if assertion with the true department.

You too can outline guests to search out unused strategies and take away
them:

class UnusedMethodRemover extends VoidVisitorAdapter {
    non-public Set calledMethods = new HashSet();
    non-public Record methodsToRemove = new ArrayList();

    // Accumulate all known as strategies
    @Override
    public void go to(MethodCallExpr n, Void arg) {
        tremendous.go to(n, arg);
        calledMethods.add(n.getNameAsString());
    }

    // Accumulate strategies to take away if not known as
    @Override
    public void go to(MethodDeclaration n, Void arg) {
        tremendous.go to(n, arg);
        String methodName = n.getNameAsString();
        if (!calledMethods.incorporates(methodName) && !methodName.equals("principal")) {
            methodsToRemove.add(n);
        }
    }

    // After visiting, take away the unused strategies
    public void removeUnusedMethods() {
        for (MethodDeclaration technique : methodsToRemove) {
            technique.take away();
        }
    }
}

This code defines a customer, UnusedMethodRemover, to detect and
take away unused strategies. It tracks all known as strategies within the calledMethods
set and checks every technique declaration. If a way isn’t known as and isn’t
principal, it provides it to the listing of strategies to take away. As soon as all strategies are
processed, it removes any unused strategies from the AST.

Composing Java Guests

You’ll be able to chain these guests collectively and apply them to your codebase
like so:

public class FeatureToggleRemoverWithCleanup {
    public static void principal(String[] args) {
        attempt {
            String filePath = "src/check/java/com/instance/Instance.java";
            CompilationUnit cu = StaticJavaParser.parse(new FileInputStream(filePath));

            // Apply transformations
            FeatureToggleVisitor toggleVisitor = new FeatureToggleVisitor();
            cu.settle for(toggleVisitor, null);

            UnusedMethodRemover remover = new UnusedMethodRemover();
            cu.settle for(remover, null);
            remover.removeUnusedMethods();

            // Write the modified code again to the file
            attempt (FileOutputStream fos = new FileOutputStream(filePath)) {
                fos.write(cu.toString().getBytes());
            }

            System.out.println("Code transformation accomplished efficiently.");
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

Every customer is a unit of transformation, and the customer sample in
JavaParser makes it simple to compose them.

OpenRewrite

One other common choice for Java tasks is OpenRewrite. It makes use of a unique format of the
supply code tree known as Lossless Semantic Bushes (LSTs), which
present extra detailed info in comparison with conventional AST (Summary
Syntax Tree) approaches utilized by instruments like JavaParser or jscodeshift.
Whereas AST focuses on the syntactic construction, LSTs seize each syntax and
semantic which means, enabling extra correct and complicated
transformations.

OpenRewrite additionally has a strong ecosystem of open-source refactoring
recipes for duties comparable to framework migrations, safety fixes, and
sustaining stylistic consistency. This built-in library of recipes can
save builders vital time by permitting them to use standardized
transformations throughout giant codebases while not having to write down customized
scripts.

For builders who want custom-made transformations, OpenRewrite permits
you to create and distribute your personal recipes, making it a extremely versatile
and extensible instrument. It’s extensively used within the Java neighborhood and is
steadily increasing into different languages, because of its superior
capabilities and community-driven strategy.

Variations Between OpenRewrite and JavaParser or jscodeshift

The important thing distinction between OpenRewrite and instruments like JavaParser or
jscodeshift lies of their strategy to code transformation:

  • OpenRewrite’s Lossless Semantic Bushes (LSTs) seize each the
    syntactic and semantic which means of the code, enabling extra correct
    transformations.
  • JavaParser and jscodeshift depend on conventional ASTs, which focus
    totally on the syntactic construction. Whereas highly effective, they could not all the time
    seize the nuances of how the code behaves semantically.

Moreover, OpenRewrite provides a big library of community-driven
refactoring recipes, making it simpler to use widespread transformations with out
needing to write down customized codemods from scratch.

Different Instruments for Codemods

Whereas jscodeshift and OpenRewrite are highly effective instruments, there are
different choices value contemplating, relying in your wants and the ecosystem
you are working in.

Hypermod

Hypermod introduces AI help to the codemod writing course of.
As a substitute of manually crafting the codemod logic, builders can describe
the specified transformation in plain English, and Hypermod will generate
the codemod utilizing jscodeshift. This makes codemod creation extra
accessible, even for builders who is probably not accustomed to AST
manipulation.

You’ll be able to compose, check, and deploy a codemod to any repository
related to Hypermod. It might probably run the codemod and generate a pull
request with the proposed adjustments, permitting you to evaluation and approve
them. This integration makes the complete course of from codemod growth
to deployment far more streamlined.

Codemod.com

Codemod.com is a community-driven platform the place builders
can share and uncover codemods. When you want a particular codemod for a
widespread refactoring process or migration, you’ll be able to seek for current
codemods. Alternatively, you’ll be able to publish codemods you’ve created to assist
others within the developer neighborhood.

When you’re migrating an API and want a codemod to deal with it,
Codemod.com can prevent time by providing pre-built codemods for
many widespread transformations, decreasing the necessity to write one from
scratch.

Conclusion

Codemods are highly effective instruments that enable builders to automate code
transformations, making it simpler to handle API adjustments, refactor legacy
code, and keep consistency throughout giant codebases with minimal guide
intervention. By utilizing instruments like jscodeshift, Hypermod, or
OpenRewrite, builders can streamline all the pieces from minor syntax
adjustments to main part rewrites, bettering total code high quality and
maintainability.

Nonetheless, whereas codemods supply vital advantages, they aren’t
with out challenges. One of many key issues is dealing with edge instances,
notably when the codebase is numerous or publicly shared. Variations
in coding kinds, import aliases, or surprising patterns can result in
points that codemods might not deal with routinely. These edge instances
require cautious planning, thorough testing, and, in some cases, guide
intervention to make sure accuracy.

To maximise the effectiveness of codemods, it’s essential to interrupt
complicated transformations into smaller, testable steps and to make use of code
standardization instruments the place attainable. Codemods could be extremely efficient,
however their success depends upon considerate design and understanding the
limitations they could face in additional diversified or complicated codebases.


Tags: APIAutomateCodemodsRefactoring
ShareTweetPin
swissnewspaper

swissnewspaper

Related Posts

My favourite musical discoveries of 2024
Software Development & Engineering

My favourite musical discoveries of 2024

28 May 2025
Refactoring with Codemods to Automate API Adjustments
Software Development & Engineering

Refactoring with Codemods to Automate API Adjustments

26 May 2025
Rising the Growth Forest 🌲 — with Martin Fowler
Software Development & Engineering

Rising the Growth Forest 🌲 — with Martin Fowler

25 May 2025
Interviewed by James Lewis at goto Copenhagen
Software Development & Engineering

Interviewed by James Lewis at goto Copenhagen

24 May 2025
Rising Patterns in Constructing GenAI Merchandise
Software Development & Engineering

Rising Patterns in Constructing GenAI Merchandise

23 May 2025
Rising Patterns in Constructing GenAI Merchandise
Software Development & Engineering

Rising Patterns in Constructing GenAI Merchandise

22 May 2025
Next Post
Productive Failure | The Main Weblog: A Management Weblog

Productive Failure | The Main Weblog: A Management Weblog

Danabot underneath the microscope

Danabot underneath the microscope

Recommended Stories

This Memorial Day is Private

This Memorial Day is Private

27 May 2025
Leqembi dosing proposal for Alzheimer’s therapy validated by MHRA

Leqembi dosing proposal for Alzheimer’s therapy validated by MHRA

4 May 2025
Experiencing Hope Fatigue | Aepiphanni

Experiencing Hope Fatigue | Aepiphanni

3 May 2025

Popular Stories

  • Eat Clear Assessment: Is This Meal Supply Service Value It?

    Eat Clear Assessment: Is This Meal Supply Service Value It?

    0 shares
    Share 0 Tweet 0
  • RBI panel suggests extending name cash market timings to 7 p.m.

    0 shares
    Share 0 Tweet 0
  • Working from home is the new normal as we combat the Covid-19

    0 shares
    Share 0 Tweet 0
  • Dataiku Brings AI Agent Creation to AI Platform

    0 shares
    Share 0 Tweet 0
  • The Significance of Using Instruments like AI-Primarily based Analytic Options

    0 shares
    Share 0 Tweet 0

About Us

Welcome to Swiss NewsPaper —your trusted source for in-depth insights, expert analysis, and up-to-date coverage across a wide array of critical sectors that shape the modern world.
We are passionate about providing our readers with knowledge that empowers them to make informed decisions in the rapidly evolving landscape of business, technology, finance, and beyond. Whether you are a business leader, entrepreneur, investor, or simply someone who enjoys staying informed, Swiss NewsPaper is here to equip you with the tools, strategies, and trends you need to succeed.

Categories

  • Advertising & Paid Media
  • Artificial Intelligence & Automation
  • Big Data & Cloud Computing
  • Biotechnology & Pharma
  • Blockchain & Web3
  • Branding & Public Relations
  • Business & Finance
  • Business Growth & Leadership
  • Climate Change & Environmental Policies
  • Corporate Strategy
  • Cybersecurity & Data Privacy
  • Digital Health & Telemedicine
  • Economic Development
  • Entrepreneurship & Startups
  • Future of Work & Smart Cities
  • Global Markets & Economy
  • Global Trade & Geopolitics
  • Government Regulations & Policies
  • Health & Science
  • Investment & Stocks
  • Marketing & Growth
  • Public Policy & Economy
  • Renewable Energy & Green Tech
  • Scientific Research & Innovation
  • SEO & Digital Marketing
  • Social Media & Content Strategy
  • Software Development & Engineering
  • Sustainability & Future Trends
  • Sustainable Business Practices
  • Technology & AI
  • Uncategorised
  • Wellbeing & Lifestyle

Recent News

  • Preview of NVDA Earnings Response
  • The best way to Monitor Your Pre-Deal Gross sales Pipeline
  • Hyperlinks 5/28/2025 | bare capitalism
  • Donald Trump orders US chip software program suppliers to cease promoting to China
  • Joe La Pompe promoting, publicité

© 2025 www.swissnewspaper.ch - All Rights Reserved.

No Result
View All Result
  • Business
    • Business Growth & Leadership
    • Corporate Strategy
    • Entrepreneurship & Startups
    • Global Markets & Economy
    • Investment & Stocks
  • Health & Science
    • Biotechnology & Pharma
    • Digital Health & Telemedicine
    • Scientific Research & Innovation
    • Wellbeing & Lifestyle
  • Marketing
    • Advertising & Paid Media
    • Branding & Public Relations
    • SEO & Digital Marketing
    • Social Media & Content Strategy
  • Economy
    • Economic Development
    • Global Trade & Geopolitics
    • Government Regulations & Policies
  • Sustainability
    • Climate Change & Environmental Policies
    • Future of Work & Smart Cities
    • Renewable Energy & Green Tech
    • Sustainable Business Practices
  • Technology & AI
    • Artificial Intelligence & Automation
    • Big Data & Cloud Computing
    • Blockchain & Web3
    • Cybersecurity & Data Privacy
    • Software Development & Engineering

© 2025 www.swissnewspaper.ch - All Rights Reserved.

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?